Step |
Hyp |
Ref |
Expression |
1 |
|
ome0.1 |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
isome |
⊢ ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) ) ) |
4 |
1 3
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) ) |
5 |
4
|
simplld |
⊢ ( 𝜑 → ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ) |
6 |
5
|
simprd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 ) |