Metamath Proof Explorer


Theorem ome0

Description: The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis ome0.1 ( 𝜑𝑂 ∈ OutMeas )
Assertion ome0 ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 )

Proof

Step Hyp Ref Expression
1 ome0.1 ( 𝜑𝑂 ∈ OutMeas )
2 isome ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥 ( 𝑂𝑦 ) ≤ ( 𝑂𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂𝑥 ) ) ) ) ) )
3 1 2 syl ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥 ( 𝑂𝑦 ) ≤ ( 𝑂𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂𝑥 ) ) ) ) ) )
4 1 3 mpbid ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥 ( 𝑂𝑦 ) ≤ ( 𝑂𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂𝑥 ) ) ) ) )
5 4 simplld ( 𝜑 → ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) )
6 5 simprd ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 )