| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omessle.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | omessle.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 3 |  | omessle.b | ⊢ ( 𝜑  →  𝐵  ⊆  𝑋 ) | 
						
							| 4 |  | omessle.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 5 | 1 2 | unidmex | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 6 | 5 3 | ssexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 7 | 6 4 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 8 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 10 | 4 9 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  𝐵 ) | 
						
							| 11 | 3 2 | sseqtrdi | ⊢ ( 𝜑  →  𝐵  ⊆  ∪  dom  𝑂 ) | 
						
							| 12 |  | elpwg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  𝒫  ∪  dom  𝑂  ↔  𝐵  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 13 | 6 12 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  𝒫  ∪  dom  𝑂  ↔  𝐵  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 14 | 11 13 | mpbird | ⊢ ( 𝜑  →  𝐵  ∈  𝒫  ∪  dom  𝑂 ) | 
						
							| 15 |  | isome | ⊢ ( 𝑂  ∈  OutMeas  →  ( 𝑂  ∈  OutMeas  ↔  ( ( ( ( 𝑂 : dom  𝑂 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑂  =  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑂 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑂 ( 𝑦  ≼  ω  →  ( 𝑂 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑂  ↾  𝑦 ) ) ) ) ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝜑  →  ( 𝑂  ∈  OutMeas  ↔  ( ( ( ( 𝑂 : dom  𝑂 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑂  =  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑂 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑂 ( 𝑦  ≼  ω  →  ( 𝑂 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑂  ↾  𝑦 ) ) ) ) ) ) | 
						
							| 17 | 1 16 | mpbid | ⊢ ( 𝜑  →  ( ( ( ( 𝑂 : dom  𝑂 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑂  =  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑂 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑂 ( 𝑦  ≼  ω  →  ( 𝑂 ‘ ∪  𝑦 )  ≤  ( Σ^ ‘ ( 𝑂  ↾  𝑦 ) ) ) ) ) | 
						
							| 18 | 17 | simplrd | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑂 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 ) ) | 
						
							| 19 |  | pweq | ⊢ ( 𝑦  =  𝐵  →  𝒫  𝑦  =  𝒫  𝐵 ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( 𝑦  =  𝐵  →  ( ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 )  ↔  ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑂 ‘ 𝑦 )  =  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 )  ↔  ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 23 | 22 | ralbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 )  ↔  ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 24 | 20 23 | bitrd | ⊢ ( 𝑦  =  𝐵  →  ( ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 )  ↔  ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 25 | 24 | rspcva | ⊢ ( ( 𝐵  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑦  ∈  𝒫  ∪  dom  𝑂 ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝑦 ) )  →  ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 26 | 14 18 25 | syl2anc | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑂 ‘ 𝑧 )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 28 | 27 | breq1d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 )  ↔  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 29 | 28 | rspcva | ⊢ ( ( 𝐴  ∈  𝒫  𝐵  ∧  ∀ 𝑧  ∈  𝒫  𝐵 ( 𝑂 ‘ 𝑧 )  ≤  ( 𝑂 ‘ 𝐵 ) )  →  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 30 | 10 26 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑂 ‘ 𝐵 ) ) |