| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenelss.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragenelss.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caragenelss.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 4 |  | caragenelss.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 5 | 1 2 | caragenel | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑆  ↔  ( 𝐴  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑥  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑥  ∩  𝐴 ) )  +𝑒  ( 𝑂 ‘ ( 𝑥  ∖  𝐴 ) ) )  =  ( 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 6 | 3 5 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑥  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑥  ∩  𝐴 ) )  +𝑒  ( 𝑂 ‘ ( 𝑥  ∖  𝐴 ) ) )  =  ( 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  ∪  dom  𝑂 ) | 
						
							| 8 | 4 | eqcomi | ⊢ ∪  dom  𝑂  =  𝑋 | 
						
							| 9 | 8 | pweqi | ⊢ 𝒫  ∪  dom  𝑂  =  𝒫  𝑋 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  𝒫  ∪  dom  𝑂  =  𝒫  𝑋 ) | 
						
							| 11 | 7 10 | eleqtrd | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  𝑋 ) | 
						
							| 12 |  | elpwg | ⊢ ( 𝐴  ∈  𝑆  →  ( 𝐴  ∈  𝒫  𝑋  ↔  𝐴  ⊆  𝑋 ) ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  𝑋  ↔  𝐴  ⊆  𝑋 ) ) | 
						
							| 14 | 11 13 | mpbid | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) |