Metamath Proof Explorer


Theorem caragenelss

Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenelss.o ( 𝜑𝑂 ∈ OutMeas )
caragenelss.s 𝑆 = ( CaraGen ‘ 𝑂 )
caragenelss.a ( 𝜑𝐴𝑆 )
caragenelss.x 𝑋 = dom 𝑂
Assertion caragenelss ( 𝜑𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 caragenelss.o ( 𝜑𝑂 ∈ OutMeas )
2 caragenelss.s 𝑆 = ( CaraGen ‘ 𝑂 )
3 caragenelss.a ( 𝜑𝐴𝑆 )
4 caragenelss.x 𝑋 = dom 𝑂
5 1 2 caragenel ( 𝜑 → ( 𝐴𝑆 ↔ ( 𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑥𝐴 ) ) +𝑒 ( 𝑂 ‘ ( 𝑥𝐴 ) ) ) = ( 𝑂𝑥 ) ) ) )
6 3 5 mpbid ( 𝜑 → ( 𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑥𝐴 ) ) +𝑒 ( 𝑂 ‘ ( 𝑥𝐴 ) ) ) = ( 𝑂𝑥 ) ) )
7 6 simpld ( 𝜑𝐴 ∈ 𝒫 dom 𝑂 )
8 4 eqcomi dom 𝑂 = 𝑋
9 8 pweqi 𝒫 dom 𝑂 = 𝒫 𝑋
10 9 a1i ( 𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋 )
11 7 10 eleqtrd ( 𝜑𝐴 ∈ 𝒫 𝑋 )
12 elpwg ( 𝐴𝑆 → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
13 3 12 syl ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
14 11 13 mpbid ( 𝜑𝐴𝑋 )