Step |
Hyp |
Ref |
Expression |
1 |
|
caragenelss.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caragenelss.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
caragenelss.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
4 |
|
caragenelss.x |
⊢ 𝑋 = ∪ dom 𝑂 |
5 |
1 2
|
caragenel |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑥 ∩ 𝐴 ) ) +𝑒 ( 𝑂 ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( 𝑂 ‘ 𝑥 ) ) ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑥 ∩ 𝐴 ) ) +𝑒 ( 𝑂 ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( 𝑂 ‘ 𝑥 ) ) ) |
7 |
6
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂 ) |
8 |
4
|
eqcomi |
⊢ ∪ dom 𝑂 = 𝑋 |
9 |
8
|
pweqi |
⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 ) |
11 |
7 10
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝑋 ) |
12 |
|
elpwg |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
14 |
11 13
|
mpbid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |