Metamath Proof Explorer


Theorem caragensplit

Description: If E is in the set generated by the Caratheodory's method, then it splits any set A in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set A . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragensplit.o φ O OutMeas
caragensplit.s S = CaraGen O
caragensplit.x X = dom O
caragensplit.e φ E S
caragensplit.a φ A X
Assertion caragensplit φ O A E + 𝑒 O A E = O A

Proof

Step Hyp Ref Expression
1 caragensplit.o φ O OutMeas
2 caragensplit.s S = CaraGen O
3 caragensplit.x X = dom O
4 caragensplit.e φ E S
5 caragensplit.a φ A X
6 1 3 unidmex φ X V
7 ssexg A X X V A V
8 5 6 7 syl2anc φ A V
9 elpwg A V A 𝒫 X A X
10 8 9 syl φ A 𝒫 X A X
11 5 10 mpbird φ A 𝒫 X
12 3 pweqi 𝒫 X = 𝒫 dom O
13 11 12 eleqtrdi φ A 𝒫 dom O
14 1 2 caragenel φ E S E 𝒫 dom O a 𝒫 dom O O a E + 𝑒 O a E = O a
15 4 14 mpbid φ E 𝒫 dom O a 𝒫 dom O O a E + 𝑒 O a E = O a
16 15 simprd φ a 𝒫 dom O O a E + 𝑒 O a E = O a
17 ineq1 a = A a E = A E
18 17 fveq2d a = A O a E = O A E
19 difeq1 a = A a E = A E
20 19 fveq2d a = A O a E = O A E
21 18 20 oveq12d a = A O a E + 𝑒 O a E = O A E + 𝑒 O A E
22 fveq2 a = A O a = O A
23 21 22 eqeq12d a = A O a E + 𝑒 O a E = O a O A E + 𝑒 O A E = O A
24 23 rspcva A 𝒫 dom O a 𝒫 dom O O a E + 𝑒 O a E = O a O A E + 𝑒 O A E = O A
25 13 16 24 syl2anc φ O A E + 𝑒 O A E = O A