Description: If F is a set, then U. dom F is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unidmex.f | |- ( ph -> F e. V ) |
|
| unidmex.x | |- X = U. dom F |
||
| Assertion | unidmex | |- ( ph -> X e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidmex.f | |- ( ph -> F e. V ) |
|
| 2 | unidmex.x | |- X = U. dom F |
|
| 3 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 4 | uniexg | |- ( dom F e. _V -> U. dom F e. _V ) |
|
| 5 | 1 3 4 | 3syl | |- ( ph -> U. dom F e. _V ) |
| 6 | 2 5 | eqeltrid | |- ( ph -> X e. _V ) |