Metamath Proof Explorer


Theorem caragenss

Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis caragenss.1 𝑆 = ( CaraGen ‘ 𝑂 )
Assertion caragenss ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 )

Proof

Step Hyp Ref Expression
1 caragenss.1 𝑆 = ( CaraGen ‘ 𝑂 )
2 ssrab2 { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } ⊆ 𝒫 dom 𝑂
3 2 a1i ( 𝑂 ∈ OutMeas → { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } ⊆ 𝒫 dom 𝑂 )
4 1 a1i ( 𝑂 ∈ OutMeas → 𝑆 = ( CaraGen ‘ 𝑂 ) )
5 caragenval ( 𝑂 ∈ OutMeas → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } )
6 4 5 eqtrd ( 𝑂 ∈ OutMeas → 𝑆 = { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } )
7 omedm ( 𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂 )
8 6 7 sseq12d ( 𝑂 ∈ OutMeas → ( 𝑆 ⊆ dom 𝑂 ↔ { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } ⊆ 𝒫 dom 𝑂 ) )
9 3 8 mpbird ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 )