Step |
Hyp |
Ref |
Expression |
1 |
|
caragenss.1 |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
2 |
|
ssrab2 |
⊢ { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ⊆ 𝒫 ∪ dom 𝑂 |
3 |
2
|
a1i |
⊢ ( 𝑂 ∈ OutMeas → { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ⊆ 𝒫 ∪ dom 𝑂 ) |
4 |
1
|
a1i |
⊢ ( 𝑂 ∈ OutMeas → 𝑆 = ( CaraGen ‘ 𝑂 ) ) |
5 |
|
caragenval |
⊢ ( 𝑂 ∈ OutMeas → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
6 |
4 5
|
eqtrd |
⊢ ( 𝑂 ∈ OutMeas → 𝑆 = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
7 |
|
omedm |
⊢ ( 𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
8 |
6 7
|
sseq12d |
⊢ ( 𝑂 ∈ OutMeas → ( 𝑆 ⊆ dom 𝑂 ↔ { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ⊆ 𝒫 ∪ dom 𝑂 ) ) |
9 |
3 8
|
mpbird |
⊢ ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 ) |