Step |
Hyp |
Ref |
Expression |
1 |
|
omeunile.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
omeunile.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
omeunile.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝒫 𝑋 ) |
4 |
|
omeunile.ct |
⊢ ( 𝜑 → 𝑌 ≼ ω ) |
5 |
1 2
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
6 |
5
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ V ) |
7 |
|
ssexg |
⊢ ( ( 𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V ) → 𝑌 ∈ V ) |
8 |
3 6 7
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
9 |
|
elpwg |
⊢ ( 𝑌 ∈ V → ( 𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋 ) ) |
11 |
3 10
|
mpbird |
⊢ ( 𝜑 → 𝑌 ∈ 𝒫 𝒫 𝑋 ) |
12 |
|
omedm |
⊢ ( 𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
14 |
2
|
pweqi |
⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
15 |
14
|
eqcomi |
⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
16 |
15
|
a1i |
⊢ ( 𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 ) |
17 |
13 16
|
eqtr2d |
⊢ ( 𝜑 → 𝒫 𝑋 = dom 𝑂 ) |
18 |
17
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂 ) |
19 |
11 18
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ 𝒫 dom 𝑂 ) |
20 |
|
isome |
⊢ ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑥 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑥 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑥 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑥 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
22 |
1 21
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑥 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑥 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) |
23 |
22
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) |
24 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≼ ω ↔ 𝑌 ≼ ω ) ) |
25 |
|
unieq |
⊢ ( 𝑦 = 𝑌 → ∪ 𝑦 = ∪ 𝑌 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑂 ‘ ∪ 𝑦 ) = ( 𝑂 ‘ ∪ 𝑌 ) ) |
27 |
|
reseq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑂 ↾ 𝑦 ) = ( 𝑂 ↾ 𝑌 ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝑦 = 𝑌 → ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) |
29 |
26 28
|
breq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ↔ ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) ) |
30 |
24 29
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ↔ ( 𝑌 ≼ ω → ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) ) ) |
31 |
30
|
rspcva |
⊢ ( ( 𝑌 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) → ( 𝑌 ≼ ω → ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) ) |
32 |
19 23 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ≼ ω → ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) ) |
33 |
4 32
|
mpd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) |