Metamath Proof Explorer


Theorem omeunile

Description: The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeunile.o ( 𝜑𝑂 ∈ OutMeas )
omeunile.x 𝑋 = dom 𝑂
omeunile.y ( 𝜑𝑌 ⊆ 𝒫 𝑋 )
omeunile.ct ( 𝜑𝑌 ≼ ω )
Assertion omeunile ( 𝜑 → ( 𝑂 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 omeunile.o ( 𝜑𝑂 ∈ OutMeas )
2 omeunile.x 𝑋 = dom 𝑂
3 omeunile.y ( 𝜑𝑌 ⊆ 𝒫 𝑋 )
4 omeunile.ct ( 𝜑𝑌 ≼ ω )
5 1 2 unidmex ( 𝜑𝑋 ∈ V )
6 5 pwexd ( 𝜑 → 𝒫 𝑋 ∈ V )
7 ssexg ( ( 𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V ) → 𝑌 ∈ V )
8 3 6 7 syl2anc ( 𝜑𝑌 ∈ V )
9 elpwg ( 𝑌 ∈ V → ( 𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋 ) )
10 8 9 syl ( 𝜑 → ( 𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋 ) )
11 3 10 mpbird ( 𝜑𝑌 ∈ 𝒫 𝒫 𝑋 )
12 omedm ( 𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂 )
13 1 12 syl ( 𝜑 → dom 𝑂 = 𝒫 dom 𝑂 )
14 2 pweqi 𝒫 𝑋 = 𝒫 dom 𝑂
15 14 eqcomi 𝒫 dom 𝑂 = 𝒫 𝑋
16 15 a1i ( 𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋 )
17 13 16 eqtr2d ( 𝜑 → 𝒫 𝑋 = dom 𝑂 )
18 17 pweqd ( 𝜑 → 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂 )
19 11 18 eleqtrd ( 𝜑𝑌 ∈ 𝒫 dom 𝑂 )
20 isome ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦 ( 𝑂𝑥 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) ) )
21 1 20 syl ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦 ( 𝑂𝑥 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) ) )
22 1 21 mpbid ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦 ( 𝑂𝑥 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) )
23 22 simprd ( 𝜑 → ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) )
24 breq1 ( 𝑦 = 𝑌 → ( 𝑦 ≼ ω ↔ 𝑌 ≼ ω ) )
25 unieq ( 𝑦 = 𝑌 𝑦 = 𝑌 )
26 25 fveq2d ( 𝑦 = 𝑌 → ( 𝑂 𝑦 ) = ( 𝑂 𝑌 ) )
27 reseq2 ( 𝑦 = 𝑌 → ( 𝑂𝑦 ) = ( 𝑂𝑌 ) )
28 27 fveq2d ( 𝑦 = 𝑌 → ( Σ^ ‘ ( 𝑂𝑦 ) ) = ( Σ^ ‘ ( 𝑂𝑌 ) ) )
29 26 28 breq12d ( 𝑦 = 𝑌 → ( ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ↔ ( 𝑂 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂𝑌 ) ) ) )
30 24 29 imbi12d ( 𝑦 = 𝑌 → ( ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ↔ ( 𝑌 ≼ ω → ( 𝑂 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂𝑌 ) ) ) ) )
31 30 rspcva ( ( 𝑌 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) → ( 𝑌 ≼ ω → ( 𝑂 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂𝑌 ) ) ) )
32 19 23 31 syl2anc ( 𝜑 → ( 𝑌 ≼ ω → ( 𝑂 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂𝑌 ) ) ) )
33 4 32 mpd ( 𝜑 → ( 𝑂 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂𝑌 ) ) )