Step |
Hyp |
Ref |
Expression |
1 |
|
ovnome.1 |
|- ( ph -> X e. Fin ) |
2 |
|
ovexd |
|- ( ph -> ( RR ^m X ) e. _V ) |
3 |
1
|
ovnf |
|- ( ph -> ( voln* ` X ) : ~P ( RR ^m X ) --> ( 0 [,] +oo ) ) |
4 |
1
|
ovn0 |
|- ( ph -> ( ( voln* ` X ) ` (/) ) = 0 ) |
5 |
1
|
3ad2ant1 |
|- ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> X e. Fin ) |
6 |
|
simp3 |
|- ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> y C_ x ) |
7 |
|
simp2 |
|- ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> x C_ ( RR ^m X ) ) |
8 |
5 6 7
|
ovnssle |
|- ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> ( ( voln* ` X ) ` y ) <_ ( ( voln* ` X ) ` x ) ) |
9 |
1
|
adantr |
|- ( ( ph /\ a : NN --> ~P ( RR ^m X ) ) -> X e. Fin ) |
10 |
|
simpr |
|- ( ( ph /\ a : NN --> ~P ( RR ^m X ) ) -> a : NN --> ~P ( RR ^m X ) ) |
11 |
9 10
|
ovnsubadd |
|- ( ( ph /\ a : NN --> ~P ( RR ^m X ) ) -> ( ( voln* ` X ) ` U_ n e. NN ( a ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( a ` n ) ) ) ) ) |
12 |
2 3 4 8 11
|
isomennd |
|- ( ph -> ( voln* ` X ) e. OutMeas ) |