Metamath Proof Explorer


Theorem ovnome

Description: ( voln*X ) is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set X . Proposition 115D (a) of Fremlin1 p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovnome.1
|- ( ph -> X e. Fin )
Assertion ovnome
|- ( ph -> ( voln* ` X ) e. OutMeas )

Proof

Step Hyp Ref Expression
1 ovnome.1
 |-  ( ph -> X e. Fin )
2 ovexd
 |-  ( ph -> ( RR ^m X ) e. _V )
3 1 ovnf
 |-  ( ph -> ( voln* ` X ) : ~P ( RR ^m X ) --> ( 0 [,] +oo ) )
4 1 ovn0
 |-  ( ph -> ( ( voln* ` X ) ` (/) ) = 0 )
5 1 3ad2ant1
 |-  ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> X e. Fin )
6 simp3
 |-  ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> y C_ x )
7 simp2
 |-  ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> x C_ ( RR ^m X ) )
8 5 6 7 ovnssle
 |-  ( ( ph /\ x C_ ( RR ^m X ) /\ y C_ x ) -> ( ( voln* ` X ) ` y ) <_ ( ( voln* ` X ) ` x ) )
9 1 adantr
 |-  ( ( ph /\ a : NN --> ~P ( RR ^m X ) ) -> X e. Fin )
10 simpr
 |-  ( ( ph /\ a : NN --> ~P ( RR ^m X ) ) -> a : NN --> ~P ( RR ^m X ) )
11 9 10 ovnsubadd
 |-  ( ( ph /\ a : NN --> ~P ( RR ^m X ) ) -> ( ( voln* ` X ) ` U_ n e. NN ( a ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( a ` n ) ) ) ) )
12 2 3 4 8 11 isomennd
 |-  ( ph -> ( voln* ` X ) e. OutMeas )