Metamath Proof Explorer


Theorem vonmea

Description: ( volnX ) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set X . Comments in Definition 115E of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis vonmea.1
|- ( ph -> X e. Fin )
Assertion vonmea
|- ( ph -> ( voln ` X ) e. Meas )

Proof

Step Hyp Ref Expression
1 vonmea.1
 |-  ( ph -> X e. Fin )
2 1 vonval
 |-  ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) )
3 1 ovnome
 |-  ( ph -> ( voln* ` X ) e. OutMeas )
4 eqid
 |-  ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) )
5 3 4 caratheodory
 |-  ( ph -> ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) e. Meas )
6 2 5 eqeltrd
 |-  ( ph -> ( voln ` X ) e. Meas )