Step |
Hyp |
Ref |
Expression |
1 |
|
caratheodory.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caratheodory.s |
|- S = ( CaraGen ` O ) |
3 |
1 2
|
caragensal |
|- ( ph -> S e. SAlg ) |
4 |
|
eqid |
|- U. dom O = U. dom O |
5 |
1 4
|
omef |
|- ( ph -> O : ~P U. dom O --> ( 0 [,] +oo ) ) |
6 |
|
caragenval |
|- ( O e. OutMeas -> ( CaraGen ` O ) = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } ) |
7 |
1 6
|
syl |
|- ( ph -> ( CaraGen ` O ) = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } ) |
8 |
7
|
eqcomd |
|- ( ph -> { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } = ( CaraGen ` O ) ) |
9 |
2
|
eqcomi |
|- ( CaraGen ` O ) = S |
10 |
9
|
a1i |
|- ( ph -> ( CaraGen ` O ) = S ) |
11 |
8 10
|
eqtr2d |
|- ( ph -> S = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } ) |
12 |
|
ssrab2 |
|- { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } C_ ~P U. dom O |
13 |
11 12
|
eqsstrdi |
|- ( ph -> S C_ ~P U. dom O ) |
14 |
5 13
|
fssresd |
|- ( ph -> ( O |` S ) : S --> ( 0 [,] +oo ) ) |
15 |
1 2
|
caragen0 |
|- ( ph -> (/) e. S ) |
16 |
|
fvres |
|- ( (/) e. S -> ( ( O |` S ) ` (/) ) = ( O ` (/) ) ) |
17 |
15 16
|
syl |
|- ( ph -> ( ( O |` S ) ` (/) ) = ( O ` (/) ) ) |
18 |
1
|
ome0 |
|- ( ph -> ( O ` (/) ) = 0 ) |
19 |
17 18
|
eqtrd |
|- ( ph -> ( ( O |` S ) ` (/) ) = 0 ) |
20 |
|
simp1 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ph ) |
21 |
|
simp2 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> e : NN --> S ) |
22 |
|
fveq2 |
|- ( n = m -> ( e ` n ) = ( e ` m ) ) |
23 |
22
|
cbvdisjv |
|- ( Disj_ n e. NN ( e ` n ) <-> Disj_ m e. NN ( e ` m ) ) |
24 |
23
|
biimpi |
|- ( Disj_ n e. NN ( e ` n ) -> Disj_ m e. NN ( e ` m ) ) |
25 |
24
|
3ad2ant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> Disj_ m e. NN ( e ` m ) ) |
26 |
1
|
3ad2ant1 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> O e. OutMeas ) |
27 |
|
simp2 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> e : NN --> S ) |
28 |
23
|
biimpri |
|- ( Disj_ m e. NN ( e ` m ) -> Disj_ n e. NN ( e ` n ) ) |
29 |
28
|
3ad2ant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> Disj_ n e. NN ( e ` n ) ) |
30 |
|
fveq2 |
|- ( m = n -> ( e ` m ) = ( e ` n ) ) |
31 |
30
|
cbviunv |
|- U_ m e. ( 1 ... j ) ( e ` m ) = U_ n e. ( 1 ... j ) ( e ` n ) |
32 |
31
|
mpteq2i |
|- ( j e. NN |-> U_ m e. ( 1 ... j ) ( e ` m ) ) = ( j e. NN |-> U_ n e. ( 1 ... j ) ( e ` n ) ) |
33 |
26 4 2 27 29 32
|
caratheodorylem2 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> ( O ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
34 |
20 21 25 33
|
syl3anc |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( O ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
35 |
3
|
adantr |
|- ( ( ph /\ e : NN --> S ) -> S e. SAlg ) |
36 |
|
nnenom |
|- NN ~~ _om |
37 |
|
endom |
|- ( NN ~~ _om -> NN ~<_ _om ) |
38 |
36 37
|
ax-mp |
|- NN ~<_ _om |
39 |
38
|
a1i |
|- ( ( ph /\ e : NN --> S ) -> NN ~<_ _om ) |
40 |
|
ffvelrn |
|- ( ( e : NN --> S /\ n e. NN ) -> ( e ` n ) e. S ) |
41 |
40
|
adantll |
|- ( ( ( ph /\ e : NN --> S ) /\ n e. NN ) -> ( e ` n ) e. S ) |
42 |
35 39 41
|
saliuncl |
|- ( ( ph /\ e : NN --> S ) -> U_ n e. NN ( e ` n ) e. S ) |
43 |
|
fvres |
|- ( U_ n e. NN ( e ` n ) e. S -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( O ` U_ n e. NN ( e ` n ) ) ) |
44 |
42 43
|
syl |
|- ( ( ph /\ e : NN --> S ) -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( O ` U_ n e. NN ( e ` n ) ) ) |
45 |
44
|
3adant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( O ` U_ n e. NN ( e ` n ) ) ) |
46 |
|
fvres |
|- ( ( e ` n ) e. S -> ( ( O |` S ) ` ( e ` n ) ) = ( O ` ( e ` n ) ) ) |
47 |
41 46
|
syl |
|- ( ( ( ph /\ e : NN --> S ) /\ n e. NN ) -> ( ( O |` S ) ` ( e ` n ) ) = ( O ` ( e ` n ) ) ) |
48 |
47
|
mpteq2dva |
|- ( ( ph /\ e : NN --> S ) -> ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) = ( n e. NN |-> ( O ` ( e ` n ) ) ) ) |
49 |
48
|
fveq2d |
|- ( ( ph /\ e : NN --> S ) -> ( sum^ ` ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
50 |
49
|
3adant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( sum^ ` ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
51 |
34 45 50
|
3eqtr4d |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) ) ) |
52 |
3 14 19 51
|
ismeannd |
|- ( ph -> ( O |` S ) e. Meas ) |