| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caratheodory.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caratheodory.s |
|- S = ( CaraGen ` O ) |
| 3 |
1 2
|
caragensal |
|- ( ph -> S e. SAlg ) |
| 4 |
|
eqid |
|- U. dom O = U. dom O |
| 5 |
1 4
|
omef |
|- ( ph -> O : ~P U. dom O --> ( 0 [,] +oo ) ) |
| 6 |
|
caragenval |
|- ( O e. OutMeas -> ( CaraGen ` O ) = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } ) |
| 7 |
1 6
|
syl |
|- ( ph -> ( CaraGen ` O ) = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } ) |
| 8 |
7
|
eqcomd |
|- ( ph -> { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } = ( CaraGen ` O ) ) |
| 9 |
2
|
eqcomi |
|- ( CaraGen ` O ) = S |
| 10 |
9
|
a1i |
|- ( ph -> ( CaraGen ` O ) = S ) |
| 11 |
8 10
|
eqtr2d |
|- ( ph -> S = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } ) |
| 12 |
|
ssrab2 |
|- { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } C_ ~P U. dom O |
| 13 |
11 12
|
eqsstrdi |
|- ( ph -> S C_ ~P U. dom O ) |
| 14 |
5 13
|
fssresd |
|- ( ph -> ( O |` S ) : S --> ( 0 [,] +oo ) ) |
| 15 |
1 2
|
caragen0 |
|- ( ph -> (/) e. S ) |
| 16 |
|
fvres |
|- ( (/) e. S -> ( ( O |` S ) ` (/) ) = ( O ` (/) ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( ( O |` S ) ` (/) ) = ( O ` (/) ) ) |
| 18 |
1
|
ome0 |
|- ( ph -> ( O ` (/) ) = 0 ) |
| 19 |
17 18
|
eqtrd |
|- ( ph -> ( ( O |` S ) ` (/) ) = 0 ) |
| 20 |
|
simp1 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ph ) |
| 21 |
|
simp2 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> e : NN --> S ) |
| 22 |
|
fveq2 |
|- ( n = m -> ( e ` n ) = ( e ` m ) ) |
| 23 |
22
|
cbvdisjv |
|- ( Disj_ n e. NN ( e ` n ) <-> Disj_ m e. NN ( e ` m ) ) |
| 24 |
23
|
biimpi |
|- ( Disj_ n e. NN ( e ` n ) -> Disj_ m e. NN ( e ` m ) ) |
| 25 |
24
|
3ad2ant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> Disj_ m e. NN ( e ` m ) ) |
| 26 |
1
|
3ad2ant1 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> O e. OutMeas ) |
| 27 |
|
simp2 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> e : NN --> S ) |
| 28 |
23
|
biimpri |
|- ( Disj_ m e. NN ( e ` m ) -> Disj_ n e. NN ( e ` n ) ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> Disj_ n e. NN ( e ` n ) ) |
| 30 |
|
fveq2 |
|- ( m = n -> ( e ` m ) = ( e ` n ) ) |
| 31 |
30
|
cbviunv |
|- U_ m e. ( 1 ... j ) ( e ` m ) = U_ n e. ( 1 ... j ) ( e ` n ) |
| 32 |
31
|
mpteq2i |
|- ( j e. NN |-> U_ m e. ( 1 ... j ) ( e ` m ) ) = ( j e. NN |-> U_ n e. ( 1 ... j ) ( e ` n ) ) |
| 33 |
26 4 2 27 29 32
|
caratheodorylem2 |
|- ( ( ph /\ e : NN --> S /\ Disj_ m e. NN ( e ` m ) ) -> ( O ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
| 34 |
20 21 25 33
|
syl3anc |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( O ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
| 35 |
3
|
adantr |
|- ( ( ph /\ e : NN --> S ) -> S e. SAlg ) |
| 36 |
|
nnenom |
|- NN ~~ _om |
| 37 |
|
endom |
|- ( NN ~~ _om -> NN ~<_ _om ) |
| 38 |
36 37
|
ax-mp |
|- NN ~<_ _om |
| 39 |
38
|
a1i |
|- ( ( ph /\ e : NN --> S ) -> NN ~<_ _om ) |
| 40 |
|
ffvelcdm |
|- ( ( e : NN --> S /\ n e. NN ) -> ( e ` n ) e. S ) |
| 41 |
40
|
adantll |
|- ( ( ( ph /\ e : NN --> S ) /\ n e. NN ) -> ( e ` n ) e. S ) |
| 42 |
35 39 41
|
saliuncl |
|- ( ( ph /\ e : NN --> S ) -> U_ n e. NN ( e ` n ) e. S ) |
| 43 |
|
fvres |
|- ( U_ n e. NN ( e ` n ) e. S -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( O ` U_ n e. NN ( e ` n ) ) ) |
| 44 |
42 43
|
syl |
|- ( ( ph /\ e : NN --> S ) -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( O ` U_ n e. NN ( e ` n ) ) ) |
| 45 |
44
|
3adant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( O ` U_ n e. NN ( e ` n ) ) ) |
| 46 |
|
fvres |
|- ( ( e ` n ) e. S -> ( ( O |` S ) ` ( e ` n ) ) = ( O ` ( e ` n ) ) ) |
| 47 |
41 46
|
syl |
|- ( ( ( ph /\ e : NN --> S ) /\ n e. NN ) -> ( ( O |` S ) ` ( e ` n ) ) = ( O ` ( e ` n ) ) ) |
| 48 |
47
|
mpteq2dva |
|- ( ( ph /\ e : NN --> S ) -> ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) = ( n e. NN |-> ( O ` ( e ` n ) ) ) ) |
| 49 |
48
|
fveq2d |
|- ( ( ph /\ e : NN --> S ) -> ( sum^ ` ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
| 50 |
49
|
3adant3 |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( sum^ ` ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( e ` n ) ) ) ) ) |
| 51 |
34 45 50
|
3eqtr4d |
|- ( ( ph /\ e : NN --> S /\ Disj_ n e. NN ( e ` n ) ) -> ( ( O |` S ) ` U_ n e. NN ( e ` n ) ) = ( sum^ ` ( n e. NN |-> ( ( O |` S ) ` ( e ` n ) ) ) ) ) |
| 52 |
3 14 19 51
|
ismeannd |
|- ( ph -> ( O |` S ) e. Meas ) |