| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caratheodory.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
caratheodory.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 3 |
1 2
|
caragensal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
eqid |
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
| 5 |
1 4
|
omef |
⊢ ( 𝜑 → 𝑂 : 𝒫 ∪ dom 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 6 |
|
caragenval |
⊢ ( 𝑂 ∈ OutMeas → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝜑 → { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } = ( CaraGen ‘ 𝑂 ) ) |
| 9 |
2
|
eqcomi |
⊢ ( CaraGen ‘ 𝑂 ) = 𝑆 |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( CaraGen ‘ 𝑂 ) = 𝑆 ) |
| 11 |
8 10
|
eqtr2d |
⊢ ( 𝜑 → 𝑆 = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
| 12 |
|
ssrab2 |
⊢ { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ⊆ 𝒫 ∪ dom 𝑂 |
| 13 |
11 12
|
eqsstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ 𝒫 ∪ dom 𝑂 ) |
| 14 |
5 13
|
fssresd |
⊢ ( 𝜑 → ( 𝑂 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
| 15 |
1 2
|
caragen0 |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 16 |
|
fvres |
⊢ ( ∅ ∈ 𝑆 → ( ( 𝑂 ↾ 𝑆 ) ‘ ∅ ) = ( 𝑂 ‘ ∅ ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ( 𝑂 ↾ 𝑆 ) ‘ ∅ ) = ( 𝑂 ‘ ∅ ) ) |
| 18 |
1
|
ome0 |
⊢ ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 ) |
| 19 |
17 18
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ↾ 𝑆 ) ‘ ∅ ) = 0 ) |
| 20 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝜑 ) |
| 21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
| 22 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑒 ‘ 𝑛 ) = ( 𝑒 ‘ 𝑚 ) ) |
| 23 |
22
|
cbvdisjv |
⊢ ( Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ↔ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) |
| 24 |
23
|
biimpi |
⊢ ( Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) → Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) |
| 26 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → 𝑂 ∈ OutMeas ) |
| 27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
| 28 |
23
|
biimpri |
⊢ ( Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 29 |
28
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑒 ‘ 𝑚 ) = ( 𝑒 ‘ 𝑛 ) ) |
| 31 |
30
|
cbviunv |
⊢ ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝑒 ‘ 𝑚 ) = ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝑒 ‘ 𝑛 ) |
| 32 |
31
|
mpteq2i |
⊢ ( 𝑗 ∈ ℕ ↦ ∪ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝑒 ‘ 𝑚 ) ) = ( 𝑗 ∈ ℕ ↦ ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝑒 ‘ 𝑛 ) ) |
| 33 |
26 4 2 27 29 32
|
caratheodorylem2 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 34 |
20 21 25 33
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 35 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) → 𝑆 ∈ SAlg ) |
| 36 |
|
nnenom |
⊢ ℕ ≈ ω |
| 37 |
|
endom |
⊢ ( ℕ ≈ ω → ℕ ≼ ω ) |
| 38 |
36 37
|
ax-mp |
⊢ ℕ ≼ ω |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) → ℕ ≼ ω ) |
| 40 |
|
ffvelcdm |
⊢ ( ( 𝑒 : ℕ ⟶ 𝑆 ∧ 𝑛 ∈ ℕ ) → ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 ) |
| 41 |
40
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 ) |
| 42 |
35 39 41
|
saliuncl |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) → ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 ) |
| 43 |
|
fvres |
⊢ ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 → ( ( 𝑂 ↾ 𝑆 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) → ( ( 𝑂 ↾ 𝑆 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
| 45 |
44
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( ( 𝑂 ↾ 𝑆 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) ) |
| 46 |
|
fvres |
⊢ ( ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 → ( ( 𝑂 ↾ 𝑆 ) ‘ ( 𝑒 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) |
| 47 |
41 46
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑂 ↾ 𝑆 ) ‘ ( 𝑒 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) |
| 48 |
47
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑂 ↾ 𝑆 ) ‘ ( 𝑒 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( 𝑂 ↾ 𝑆 ) ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 50 |
49
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( 𝑂 ↾ 𝑆 ) ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 51 |
34 45 50
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ 𝑆 ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( ( 𝑂 ↾ 𝑆 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( 𝑂 ↾ 𝑆 ) ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 52 |
3 14 19 51
|
ismeannd |
⊢ ( 𝜑 → ( 𝑂 ↾ 𝑆 ) ∈ Meas ) |