Metamath Proof Explorer


Theorem caratheodorylem2

Description: Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caratheodorylem2.o ( 𝜑𝑂 ∈ OutMeas )
caratheodorylem2.x 𝑋 = dom 𝑂
caratheodorylem2.s 𝑆 = ( CaraGen ‘ 𝑂 )
caratheodorylem2.e ( 𝜑𝐸 : ℕ ⟶ 𝑆 )
caratheodorylem2.5 ( 𝜑Disj 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
caratheodorylem2.g 𝐺 = ( 𝑘 ∈ ℕ ↦ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) )
Assertion caratheodorylem2 ( 𝜑 → ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 caratheodorylem2.o ( 𝜑𝑂 ∈ OutMeas )
2 caratheodorylem2.x 𝑋 = dom 𝑂
3 caratheodorylem2.s 𝑆 = ( CaraGen ‘ 𝑂 )
4 caratheodorylem2.e ( 𝜑𝐸 : ℕ ⟶ 𝑆 )
5 caratheodorylem2.5 ( 𝜑Disj 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
6 caratheodorylem2.g 𝐺 = ( 𝑘 ∈ ℕ ↦ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) )
7 3 caragenss ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 )
8 1 7 syl ( 𝜑𝑆 ⊆ dom 𝑂 )
9 8 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑆 ⊆ dom 𝑂 )
10 4 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸𝑛 ) ∈ 𝑆 )
11 9 10 sseldd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸𝑛 ) ∈ dom 𝑂 )
12 elssuni ( ( 𝐸𝑛 ) ∈ dom 𝑂 → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
13 11 12 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
14 13 2 sseqtrrdi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸𝑛 ) ⊆ 𝑋 )
15 14 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐸𝑛 ) ⊆ 𝑋 )
16 iunss ( 𝑛 ∈ ℕ ( 𝐸𝑛 ) ⊆ 𝑋 ↔ ∀ 𝑛 ∈ ℕ ( 𝐸𝑛 ) ⊆ 𝑋 )
17 15 16 sylibr ( 𝜑 𝑛 ∈ ℕ ( 𝐸𝑛 ) ⊆ 𝑋 )
18 1 2 17 omexrcl ( 𝜑 → ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ∈ ℝ* )
19 nnex ℕ ∈ V
20 19 a1i ( 𝜑 → ℕ ∈ V )
21 1 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑂 ∈ OutMeas )
22 21 2 14 omecl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) ∈ ( 0 [,] +∞ ) )
23 eqid ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) )
24 22 23 fmptd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) )
25 20 24 sge0xrcl ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
26 nfv 𝑛 𝜑
27 nfcv 𝑛 𝐸
28 nnuz ℕ = ( ℤ ‘ 1 )
29 1 2 3 caragensspw ( 𝜑𝑆 ⊆ 𝒫 𝑋 )
30 4 29 fssd ( 𝜑𝐸 : ℕ ⟶ 𝒫 𝑋 )
31 26 27 1 2 28 30 omeiunle ( 𝜑 → ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
32 elpwinss ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → 𝑥 ⊆ ℕ )
33 32 resmptd ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ↾ 𝑥 ) = ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
34 33 fveq2d ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
35 34 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
36 1zzd ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 1 ∈ ℤ )
37 32 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ⊆ ℕ )
38 elinel2 ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → 𝑥 ∈ Fin )
39 38 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ∈ Fin )
40 36 28 37 39 uzfissfz ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ∃ 𝑘 ∈ ℕ 𝑥 ⊆ ( 1 ... 𝑘 ) )
41 vex 𝑥 ∈ V
42 41 a1i ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) → 𝑥 ∈ V )
43 1 ad2antrr ( ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛𝑥 ) → 𝑂 ∈ OutMeas )
44 30 ad2antrr ( ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛𝑥 ) → 𝐸 : ℕ ⟶ 𝒫 𝑋 )
45 fz1ssnn ( 1 ... 𝑘 ) ⊆ ℕ
46 ssel2 ( ( 𝑥 ⊆ ( 1 ... 𝑘 ) ∧ 𝑛𝑥 ) → 𝑛 ∈ ( 1 ... 𝑘 ) )
47 45 46 sseldi ( ( 𝑥 ⊆ ( 1 ... 𝑘 ) ∧ 𝑛𝑥 ) → 𝑛 ∈ ℕ )
48 47 adantll ( ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛𝑥 ) → 𝑛 ∈ ℕ )
49 44 48 ffvelrnd ( ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛𝑥 ) → ( 𝐸𝑛 ) ∈ 𝒫 𝑋 )
50 elpwi ( ( 𝐸𝑛 ) ∈ 𝒫 𝑋 → ( 𝐸𝑛 ) ⊆ 𝑋 )
51 49 50 syl ( ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛𝑥 ) → ( 𝐸𝑛 ) ⊆ 𝑋 )
52 43 2 51 omecl ( ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛𝑥 ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) ∈ ( 0 [,] +∞ ) )
53 eqid ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) )
54 52 53 fmptd ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
55 42 54 sge0xrcl ( ( 𝜑𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
56 55 3adant2 ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
57 ovex ( 1 ... 𝑘 ) ∈ V
58 57 a1i ( 𝜑 → ( 1 ... 𝑘 ) ∈ V )
59 elfznn ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ )
60 59 22 sylan2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) ∈ ( 0 [,] +∞ ) )
61 eqid ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) )
62 60 61 fmptd ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) : ( 1 ... 𝑘 ) ⟶ ( 0 [,] +∞ ) )
63 58 62 sge0xrcl ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
64 63 3ad2ant1 ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
65 18 3ad2ant1 ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ∈ ℝ* )
66 57 a1i ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( 1 ... 𝑘 ) ∈ V )
67 simpl1 ( ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝜑 )
68 59 adantl ( ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ )
69 67 68 22 syl2anc ( ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) ∈ ( 0 [,] +∞ ) )
70 simp3 ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → 𝑥 ⊆ ( 1 ... 𝑘 ) )
71 66 69 70 sge0lessmpt ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
72 1 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑂 ∈ OutMeas )
73 4 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐸 : ℕ ⟶ 𝑆 )
74 5 adantr ( ( 𝜑𝑘 ∈ ℕ ) → Disj 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
75 nfiu1 𝑛 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 )
76 nfcv 𝑘 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸𝑚 )
77 fveq2 ( 𝑛 = 𝑚 → ( 𝐸𝑛 ) = ( 𝐸𝑚 ) )
78 77 cbviunv 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) = 𝑚 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑚 )
79 78 a1i ( 𝑘 = 𝑛 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) = 𝑚 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑚 ) )
80 oveq2 ( 𝑘 = 𝑛 → ( 1 ... 𝑘 ) = ( 1 ... 𝑛 ) )
81 80 iuneq1d ( 𝑘 = 𝑛 𝑚 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑚 ) = 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸𝑚 ) )
82 79 81 eqtrd ( 𝑘 = 𝑛 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) = 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸𝑚 ) )
83 75 76 82 cbvmpt ( 𝑘 ∈ ℕ ↦ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸𝑚 ) )
84 6 83 eqtri 𝐺 = ( 𝑛 ∈ ℕ ↦ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸𝑚 ) )
85 id ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ )
86 85 28 eleqtrdi ( 𝑘 ∈ ℕ → 𝑘 ∈ ( ℤ ‘ 1 ) )
87 86 adantl ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
88 72 3 28 73 74 84 87 caratheodorylem1 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐺𝑘 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
89 88 eqcomd ( ( 𝜑𝑘 ∈ ℕ ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( 𝑂 ‘ ( 𝐺𝑘 ) ) )
90 17 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑛 ∈ ℕ ( 𝐸𝑛 ) ⊆ 𝑋 )
91 fvex ( 𝐸𝑛 ) ∈ V
92 57 91 iunex 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) ∈ V
93 6 fvmpt2 ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) ∈ V ) → ( 𝐺𝑘 ) = 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) )
94 85 92 93 sylancl ( 𝑘 ∈ ℕ → ( 𝐺𝑘 ) = 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) )
95 45 a1i ( 𝑘 ∈ ℕ → ( 1 ... 𝑘 ) ⊆ ℕ )
96 iunss1 ( ( 1 ... 𝑘 ) ⊆ ℕ → 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) ⊆ 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
97 95 96 syl ( 𝑘 ∈ ℕ → 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸𝑛 ) ⊆ 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
98 94 97 eqsstrd ( 𝑘 ∈ ℕ → ( 𝐺𝑘 ) ⊆ 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
99 98 adantl ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) ⊆ 𝑛 ∈ ℕ ( 𝐸𝑛 ) )
100 72 2 90 99 omessle ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐺𝑘 ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
101 89 100 eqbrtrd ( ( 𝜑𝑘 ∈ ℕ ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
102 101 3adant3 ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
103 56 64 65 71 102 xrletrd ( ( 𝜑𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
104 103 3exp ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑥 ⊆ ( 1 ... 𝑘 ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ) ) )
105 104 adantr ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( 𝑘 ∈ ℕ → ( 𝑥 ⊆ ( 1 ... 𝑘 ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ) ) )
106 105 rexlimdv ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ∃ 𝑘 ∈ ℕ 𝑥 ⊆ ( 1 ... 𝑘 ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ) )
107 40 106 mpd ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛𝑥 ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
108 35 107 eqbrtrd ( ( 𝜑𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ↾ 𝑥 ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
109 108 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ↾ 𝑥 ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
110 20 24 18 sge0lefi ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ↔ ∀ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ↾ 𝑥 ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) ) )
111 109 110 mpbird ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) )
112 18 25 31 111 xrletrid ( 𝜑 → ( 𝑂 𝑛 ∈ ℕ ( 𝐸𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )