Step |
Hyp |
Ref |
Expression |
1 |
|
caratheodorylem2.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caratheodorylem2.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
caratheodorylem2.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
4 |
|
caratheodorylem2.e |
⊢ ( 𝜑 → 𝐸 : ℕ ⟶ 𝑆 ) |
5 |
|
caratheodorylem2.5 |
⊢ ( 𝜑 → Disj 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
6 |
|
caratheodorylem2.g |
⊢ 𝐺 = ( 𝑘 ∈ ℕ ↦ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
7 |
3
|
caragenss |
⊢ ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ dom 𝑂 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ⊆ dom 𝑂 ) |
10 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 ) |
11 |
9 10
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑂 ) |
12 |
|
elssuni |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑂 → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
14 |
13 2
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
16 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ↔ ∀ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
17 |
15 16
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
18 |
1 2 17
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
19 |
|
nnex |
⊢ ℕ ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑂 ∈ OutMeas ) |
22 |
21 2 14
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
23 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
24 |
22 23
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
25 |
20 24
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
26 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
27 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐸 |
28 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
29 |
1 2 3
|
caragensspw |
⊢ ( 𝜑 → 𝑆 ⊆ 𝒫 𝑋 ) |
30 |
4 29
|
fssd |
⊢ ( 𝜑 → 𝐸 : ℕ ⟶ 𝒫 𝑋 ) |
31 |
26 27 1 2 28 30
|
omeiunle |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
32 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → 𝑥 ⊆ ℕ ) |
33 |
32
|
resmptd |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑥 ) = ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
36 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 1 ∈ ℤ ) |
37 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ⊆ ℕ ) |
38 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) → 𝑥 ∈ Fin ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ∈ Fin ) |
40 |
36 28 37 39
|
uzfissfz |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ∃ 𝑘 ∈ ℕ 𝑥 ⊆ ( 1 ... 𝑘 ) ) |
41 |
|
vex |
⊢ 𝑥 ∈ V |
42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → 𝑥 ∈ V ) |
43 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑥 ) → 𝑂 ∈ OutMeas ) |
44 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑥 ) → 𝐸 : ℕ ⟶ 𝒫 𝑋 ) |
45 |
|
fz1ssnn |
⊢ ( 1 ... 𝑘 ) ⊆ ℕ |
46 |
|
ssel2 |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝑘 ) ∧ 𝑛 ∈ 𝑥 ) → 𝑛 ∈ ( 1 ... 𝑘 ) ) |
47 |
45 46
|
sselid |
⊢ ( ( 𝑥 ⊆ ( 1 ... 𝑘 ) ∧ 𝑛 ∈ 𝑥 ) → 𝑛 ∈ ℕ ) |
48 |
47
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑥 ) → 𝑛 ∈ ℕ ) |
49 |
44 48
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑥 ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
50 |
|
elpwi |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 𝑋 → ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
51 |
49 50
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑥 ) → ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
52 |
43 2 51
|
omecl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑥 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
53 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
54 |
52 53
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
55 |
42 54
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
56 |
55
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
57 |
|
ovex |
⊢ ( 1 ... 𝑘 ) ∈ V |
58 |
57
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑘 ) ∈ V ) |
59 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) |
60 |
59 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
61 |
|
eqid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
62 |
60 61
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : ( 1 ... 𝑘 ) ⟶ ( 0 [,] +∞ ) ) |
63 |
58 62
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
64 |
63
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
65 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
66 |
57
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( 1 ... 𝑘 ) ∈ V ) |
67 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝜑 ) |
68 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
69 |
67 68 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
70 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → 𝑥 ⊆ ( 1 ... 𝑘 ) ) |
71 |
66 69 70
|
sge0lessmpt |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
72 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑂 ∈ OutMeas ) |
73 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐸 : ℕ ⟶ 𝑆 ) |
74 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Disj 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
75 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) |
76 |
|
nfcv |
⊢ Ⅎ 𝑘 ∪ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸 ‘ 𝑚 ) |
77 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑚 ) ) |
78 |
77
|
cbviunv |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) = ∪ 𝑚 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑚 ) |
79 |
78
|
a1i |
⊢ ( 𝑘 = 𝑛 → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) = ∪ 𝑚 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑚 ) ) |
80 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 1 ... 𝑘 ) = ( 1 ... 𝑛 ) ) |
81 |
80
|
iuneq1d |
⊢ ( 𝑘 = 𝑛 → ∪ 𝑚 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑚 ) = ∪ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸 ‘ 𝑚 ) ) |
82 |
79 81
|
eqtrd |
⊢ ( 𝑘 = 𝑛 → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) = ∪ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸 ‘ 𝑚 ) ) |
83 |
75 76 82
|
cbvmpt |
⊢ ( 𝑘 ∈ ℕ ↦ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ∪ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸 ‘ 𝑚 ) ) |
84 |
6 83
|
eqtri |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ∪ 𝑚 ∈ ( 1 ... 𝑛 ) ( 𝐸 ‘ 𝑚 ) ) |
85 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
86 |
85 28
|
eleqtrdi |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
88 |
72 3 28 73 74 84 87
|
caratheodorylem1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
89 |
88
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
90 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
91 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
92 |
57 91
|
iunex |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ∈ V |
93 |
6
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ∈ V ) → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
94 |
85 92 93
|
sylancl |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
95 |
45
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... 𝑘 ) ⊆ ℕ ) |
96 |
|
iunss1 |
⊢ ( ( 1 ... 𝑘 ) ⊆ ℕ → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
97 |
95 96
|
syl |
⊢ ( 𝑘 ∈ ℕ → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
98 |
94 97
|
eqsstrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) |
100 |
72 2 90 99
|
omessle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
101 |
89 100
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
102 |
101
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 1 ... 𝑘 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
103 |
56 64 65 71 102
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑥 ⊆ ( 1 ... 𝑘 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
104 |
103
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑥 ⊆ ( 1 ... 𝑘 ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( 𝑘 ∈ ℕ → ( 𝑥 ⊆ ( 1 ... 𝑘 ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
106 |
105
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ∃ 𝑘 ∈ ℕ 𝑥 ⊆ ( 1 ... 𝑘 ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) ) |
107 |
40 106
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑥 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
108 |
35 107
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑥 ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑥 ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
110 |
20 24 18
|
sge0lefi |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ↔ ∀ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ( Σ^ ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑥 ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) ) |
111 |
109 110
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) ) |
112 |
18 25 31 111
|
xrletrid |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐸 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |