| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caratheodorylem2.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caratheodorylem2.x |
|- X = U. dom O |
| 3 |
|
caratheodorylem2.s |
|- S = ( CaraGen ` O ) |
| 4 |
|
caratheodorylem2.e |
|- ( ph -> E : NN --> S ) |
| 5 |
|
caratheodorylem2.5 |
|- ( ph -> Disj_ n e. NN ( E ` n ) ) |
| 6 |
|
caratheodorylem2.g |
|- G = ( k e. NN |-> U_ n e. ( 1 ... k ) ( E ` n ) ) |
| 7 |
3
|
caragenss |
|- ( O e. OutMeas -> S C_ dom O ) |
| 8 |
1 7
|
syl |
|- ( ph -> S C_ dom O ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ n e. NN ) -> S C_ dom O ) |
| 10 |
4
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) e. S ) |
| 11 |
9 10
|
sseldd |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) e. dom O ) |
| 12 |
|
elssuni |
|- ( ( E ` n ) e. dom O -> ( E ` n ) C_ U. dom O ) |
| 13 |
11 12
|
syl |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) C_ U. dom O ) |
| 14 |
13 2
|
sseqtrrdi |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) C_ X ) |
| 15 |
14
|
ralrimiva |
|- ( ph -> A. n e. NN ( E ` n ) C_ X ) |
| 16 |
|
iunss |
|- ( U_ n e. NN ( E ` n ) C_ X <-> A. n e. NN ( E ` n ) C_ X ) |
| 17 |
15 16
|
sylibr |
|- ( ph -> U_ n e. NN ( E ` n ) C_ X ) |
| 18 |
1 2 17
|
omexrcl |
|- ( ph -> ( O ` U_ n e. NN ( E ` n ) ) e. RR* ) |
| 19 |
|
nnex |
|- NN e. _V |
| 20 |
19
|
a1i |
|- ( ph -> NN e. _V ) |
| 21 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> O e. OutMeas ) |
| 22 |
21 2 14
|
omecl |
|- ( ( ph /\ n e. NN ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 23 |
|
eqid |
|- ( n e. NN |-> ( O ` ( E ` n ) ) ) = ( n e. NN |-> ( O ` ( E ` n ) ) ) |
| 24 |
22 23
|
fmptd |
|- ( ph -> ( n e. NN |-> ( O ` ( E ` n ) ) ) : NN --> ( 0 [,] +oo ) ) |
| 25 |
20 24
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( O ` ( E ` n ) ) ) ) e. RR* ) |
| 26 |
|
nfv |
|- F/ n ph |
| 27 |
|
nfcv |
|- F/_ n E |
| 28 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 29 |
1 2 3
|
caragensspw |
|- ( ph -> S C_ ~P X ) |
| 30 |
4 29
|
fssd |
|- ( ph -> E : NN --> ~P X ) |
| 31 |
26 27 1 2 28 30
|
omeiunle |
|- ( ph -> ( O ` U_ n e. NN ( E ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( O ` ( E ` n ) ) ) ) ) |
| 32 |
|
elpwinss |
|- ( x e. ( ~P NN i^i Fin ) -> x C_ NN ) |
| 33 |
32
|
resmptd |
|- ( x e. ( ~P NN i^i Fin ) -> ( ( n e. NN |-> ( O ` ( E ` n ) ) ) |` x ) = ( n e. x |-> ( O ` ( E ` n ) ) ) ) |
| 34 |
33
|
fveq2d |
|- ( x e. ( ~P NN i^i Fin ) -> ( sum^ ` ( ( n e. NN |-> ( O ` ( E ` n ) ) ) |` x ) ) = ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> ( sum^ ` ( ( n e. NN |-> ( O ` ( E ` n ) ) ) |` x ) ) = ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) ) |
| 36 |
|
1zzd |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> 1 e. ZZ ) |
| 37 |
32
|
adantl |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> x C_ NN ) |
| 38 |
|
elinel2 |
|- ( x e. ( ~P NN i^i Fin ) -> x e. Fin ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> x e. Fin ) |
| 40 |
36 28 37 39
|
uzfissfz |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> E. k e. NN x C_ ( 1 ... k ) ) |
| 41 |
|
vex |
|- x e. _V |
| 42 |
41
|
a1i |
|- ( ( ph /\ x C_ ( 1 ... k ) ) -> x e. _V ) |
| 43 |
1
|
ad2antrr |
|- ( ( ( ph /\ x C_ ( 1 ... k ) ) /\ n e. x ) -> O e. OutMeas ) |
| 44 |
30
|
ad2antrr |
|- ( ( ( ph /\ x C_ ( 1 ... k ) ) /\ n e. x ) -> E : NN --> ~P X ) |
| 45 |
|
fz1ssnn |
|- ( 1 ... k ) C_ NN |
| 46 |
|
ssel2 |
|- ( ( x C_ ( 1 ... k ) /\ n e. x ) -> n e. ( 1 ... k ) ) |
| 47 |
45 46
|
sselid |
|- ( ( x C_ ( 1 ... k ) /\ n e. x ) -> n e. NN ) |
| 48 |
47
|
adantll |
|- ( ( ( ph /\ x C_ ( 1 ... k ) ) /\ n e. x ) -> n e. NN ) |
| 49 |
44 48
|
ffvelcdmd |
|- ( ( ( ph /\ x C_ ( 1 ... k ) ) /\ n e. x ) -> ( E ` n ) e. ~P X ) |
| 50 |
|
elpwi |
|- ( ( E ` n ) e. ~P X -> ( E ` n ) C_ X ) |
| 51 |
49 50
|
syl |
|- ( ( ( ph /\ x C_ ( 1 ... k ) ) /\ n e. x ) -> ( E ` n ) C_ X ) |
| 52 |
43 2 51
|
omecl |
|- ( ( ( ph /\ x C_ ( 1 ... k ) ) /\ n e. x ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 53 |
|
eqid |
|- ( n e. x |-> ( O ` ( E ` n ) ) ) = ( n e. x |-> ( O ` ( E ` n ) ) ) |
| 54 |
52 53
|
fmptd |
|- ( ( ph /\ x C_ ( 1 ... k ) ) -> ( n e. x |-> ( O ` ( E ` n ) ) ) : x --> ( 0 [,] +oo ) ) |
| 55 |
42 54
|
sge0xrcl |
|- ( ( ph /\ x C_ ( 1 ... k ) ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) e. RR* ) |
| 56 |
55
|
3adant2 |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) e. RR* ) |
| 57 |
|
ovex |
|- ( 1 ... k ) e. _V |
| 58 |
57
|
a1i |
|- ( ph -> ( 1 ... k ) e. _V ) |
| 59 |
|
elfznn |
|- ( n e. ( 1 ... k ) -> n e. NN ) |
| 60 |
59 22
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... k ) ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 61 |
|
eqid |
|- ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) |
| 62 |
60 61
|
fmptd |
|- ( ph -> ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) : ( 1 ... k ) --> ( 0 [,] +oo ) ) |
| 63 |
58 62
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) e. RR* ) |
| 64 |
63
|
3ad2ant1 |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) e. RR* ) |
| 65 |
18
|
3ad2ant1 |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( O ` U_ n e. NN ( E ` n ) ) e. RR* ) |
| 66 |
57
|
a1i |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( 1 ... k ) e. _V ) |
| 67 |
|
simpl1 |
|- ( ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) /\ n e. ( 1 ... k ) ) -> ph ) |
| 68 |
59
|
adantl |
|- ( ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) /\ n e. ( 1 ... k ) ) -> n e. NN ) |
| 69 |
67 68 22
|
syl2anc |
|- ( ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) /\ n e. ( 1 ... k ) ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 70 |
|
simp3 |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> x C_ ( 1 ... k ) ) |
| 71 |
66 69 70
|
sge0lessmpt |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) <_ ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) ) |
| 72 |
1
|
adantr |
|- ( ( ph /\ k e. NN ) -> O e. OutMeas ) |
| 73 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> E : NN --> S ) |
| 74 |
5
|
adantr |
|- ( ( ph /\ k e. NN ) -> Disj_ n e. NN ( E ` n ) ) |
| 75 |
|
nfiu1 |
|- F/_ n U_ n e. ( 1 ... k ) ( E ` n ) |
| 76 |
|
nfcv |
|- F/_ k U_ m e. ( 1 ... n ) ( E ` m ) |
| 77 |
|
fveq2 |
|- ( n = m -> ( E ` n ) = ( E ` m ) ) |
| 78 |
77
|
cbviunv |
|- U_ n e. ( 1 ... k ) ( E ` n ) = U_ m e. ( 1 ... k ) ( E ` m ) |
| 79 |
78
|
a1i |
|- ( k = n -> U_ n e. ( 1 ... k ) ( E ` n ) = U_ m e. ( 1 ... k ) ( E ` m ) ) |
| 80 |
|
oveq2 |
|- ( k = n -> ( 1 ... k ) = ( 1 ... n ) ) |
| 81 |
80
|
iuneq1d |
|- ( k = n -> U_ m e. ( 1 ... k ) ( E ` m ) = U_ m e. ( 1 ... n ) ( E ` m ) ) |
| 82 |
79 81
|
eqtrd |
|- ( k = n -> U_ n e. ( 1 ... k ) ( E ` n ) = U_ m e. ( 1 ... n ) ( E ` m ) ) |
| 83 |
75 76 82
|
cbvmpt |
|- ( k e. NN |-> U_ n e. ( 1 ... k ) ( E ` n ) ) = ( n e. NN |-> U_ m e. ( 1 ... n ) ( E ` m ) ) |
| 84 |
6 83
|
eqtri |
|- G = ( n e. NN |-> U_ m e. ( 1 ... n ) ( E ` m ) ) |
| 85 |
|
id |
|- ( k e. NN -> k e. NN ) |
| 86 |
85 28
|
eleqtrdi |
|- ( k e. NN -> k e. ( ZZ>= ` 1 ) ) |
| 87 |
86
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 88 |
72 3 28 73 74 84 87
|
caratheodorylem1 |
|- ( ( ph /\ k e. NN ) -> ( O ` ( G ` k ) ) = ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) ) |
| 89 |
88
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) = ( O ` ( G ` k ) ) ) |
| 90 |
17
|
adantr |
|- ( ( ph /\ k e. NN ) -> U_ n e. NN ( E ` n ) C_ X ) |
| 91 |
|
fvex |
|- ( E ` n ) e. _V |
| 92 |
57 91
|
iunex |
|- U_ n e. ( 1 ... k ) ( E ` n ) e. _V |
| 93 |
6
|
fvmpt2 |
|- ( ( k e. NN /\ U_ n e. ( 1 ... k ) ( E ` n ) e. _V ) -> ( G ` k ) = U_ n e. ( 1 ... k ) ( E ` n ) ) |
| 94 |
85 92 93
|
sylancl |
|- ( k e. NN -> ( G ` k ) = U_ n e. ( 1 ... k ) ( E ` n ) ) |
| 95 |
45
|
a1i |
|- ( k e. NN -> ( 1 ... k ) C_ NN ) |
| 96 |
|
iunss1 |
|- ( ( 1 ... k ) C_ NN -> U_ n e. ( 1 ... k ) ( E ` n ) C_ U_ n e. NN ( E ` n ) ) |
| 97 |
95 96
|
syl |
|- ( k e. NN -> U_ n e. ( 1 ... k ) ( E ` n ) C_ U_ n e. NN ( E ` n ) ) |
| 98 |
94 97
|
eqsstrd |
|- ( k e. NN -> ( G ` k ) C_ U_ n e. NN ( E ` n ) ) |
| 99 |
98
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) C_ U_ n e. NN ( E ` n ) ) |
| 100 |
72 2 90 99
|
omessle |
|- ( ( ph /\ k e. NN ) -> ( O ` ( G ` k ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 101 |
89 100
|
eqbrtrd |
|- ( ( ph /\ k e. NN ) -> ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 102 |
101
|
3adant3 |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( sum^ ` ( n e. ( 1 ... k ) |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 103 |
56 64 65 71 102
|
xrletrd |
|- ( ( ph /\ k e. NN /\ x C_ ( 1 ... k ) ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 104 |
103
|
3exp |
|- ( ph -> ( k e. NN -> ( x C_ ( 1 ... k ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) ) ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> ( k e. NN -> ( x C_ ( 1 ... k ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) ) ) |
| 106 |
105
|
rexlimdv |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> ( E. k e. NN x C_ ( 1 ... k ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) ) |
| 107 |
40 106
|
mpd |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> ( sum^ ` ( n e. x |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 108 |
35 107
|
eqbrtrd |
|- ( ( ph /\ x e. ( ~P NN i^i Fin ) ) -> ( sum^ ` ( ( n e. NN |-> ( O ` ( E ` n ) ) ) |` x ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 109 |
108
|
ralrimiva |
|- ( ph -> A. x e. ( ~P NN i^i Fin ) ( sum^ ` ( ( n e. NN |-> ( O ` ( E ` n ) ) ) |` x ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 110 |
20 24 18
|
sge0lefi |
|- ( ph -> ( ( sum^ ` ( n e. NN |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) <-> A. x e. ( ~P NN i^i Fin ) ( sum^ ` ( ( n e. NN |-> ( O ` ( E ` n ) ) ) |` x ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) ) |
| 111 |
109 110
|
mpbird |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( O ` ( E ` n ) ) ) ) <_ ( O ` U_ n e. NN ( E ` n ) ) ) |
| 112 |
18 25 31 111
|
xrletrid |
|- ( ph -> ( O ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( O ` ( E ` n ) ) ) ) ) |