Step |
Hyp |
Ref |
Expression |
1 |
|
omeiunle.nph |
|- F/ n ph |
2 |
|
omeiunle.ne |
|- F/_ n E |
3 |
|
omeiunle.o |
|- ( ph -> O e. OutMeas ) |
4 |
|
omeiunle.x |
|- X = U. dom O |
5 |
|
omeiunle.z |
|- Z = ( ZZ>= ` N ) |
6 |
|
omeiunle.e |
|- ( ph -> E : Z --> ~P X ) |
7 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
8 |
6
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) e. ~P X ) |
9 |
|
elpwi |
|- ( ( E ` n ) e. ~P X -> ( E ` n ) C_ X ) |
10 |
8 9
|
syl |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) C_ X ) |
11 |
10
|
ex |
|- ( ph -> ( n e. Z -> ( E ` n ) C_ X ) ) |
12 |
1 11
|
ralrimi |
|- ( ph -> A. n e. Z ( E ` n ) C_ X ) |
13 |
|
iunss |
|- ( U_ n e. Z ( E ` n ) C_ X <-> A. n e. Z ( E ` n ) C_ X ) |
14 |
12 13
|
sylibr |
|- ( ph -> U_ n e. Z ( E ` n ) C_ X ) |
15 |
3 4 14
|
omecl |
|- ( ph -> ( O ` U_ n e. Z ( E ` n ) ) e. ( 0 [,] +oo ) ) |
16 |
7 15
|
sselid |
|- ( ph -> ( O ` U_ n e. Z ( E ` n ) ) e. RR* ) |
17 |
6
|
ffnd |
|- ( ph -> E Fn Z ) |
18 |
5
|
fvexi |
|- Z e. _V |
19 |
18
|
a1i |
|- ( ph -> Z e. _V ) |
20 |
|
fnex |
|- ( ( E Fn Z /\ Z e. _V ) -> E e. _V ) |
21 |
17 19 20
|
syl2anc |
|- ( ph -> E e. _V ) |
22 |
|
rnexg |
|- ( E e. _V -> ran E e. _V ) |
23 |
21 22
|
syl |
|- ( ph -> ran E e. _V ) |
24 |
3 4
|
omef |
|- ( ph -> O : ~P X --> ( 0 [,] +oo ) ) |
25 |
6
|
frnd |
|- ( ph -> ran E C_ ~P X ) |
26 |
24 25
|
fssresd |
|- ( ph -> ( O |` ran E ) : ran E --> ( 0 [,] +oo ) ) |
27 |
23 26
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( O |` ran E ) ) e. RR* ) |
28 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> O e. OutMeas ) |
29 |
28 4 10
|
omecl |
|- ( ( ph /\ n e. Z ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
30 |
|
eqid |
|- ( n e. Z |-> ( O ` ( E ` n ) ) ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) |
31 |
1 29 30
|
fmptdf |
|- ( ph -> ( n e. Z |-> ( O ` ( E ` n ) ) ) : Z --> ( 0 [,] +oo ) ) |
32 |
19 31
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) e. RR* ) |
33 |
|
fvex |
|- ( E ` n ) e. _V |
34 |
33
|
rgenw |
|- A. n e. Z ( E ` n ) e. _V |
35 |
|
dfiun3g |
|- ( A. n e. Z ( E ` n ) e. _V -> U_ n e. Z ( E ` n ) = U. ran ( n e. Z |-> ( E ` n ) ) ) |
36 |
34 35
|
ax-mp |
|- U_ n e. Z ( E ` n ) = U. ran ( n e. Z |-> ( E ` n ) ) |
37 |
36
|
a1i |
|- ( ph -> U_ n e. Z ( E ` n ) = U. ran ( n e. Z |-> ( E ` n ) ) ) |
38 |
6
|
feqmptd |
|- ( ph -> E = ( m e. Z |-> ( E ` m ) ) ) |
39 |
|
nfcv |
|- F/_ n m |
40 |
2 39
|
nffv |
|- F/_ n ( E ` m ) |
41 |
|
nfcv |
|- F/_ m ( E ` n ) |
42 |
|
fveq2 |
|- ( m = n -> ( E ` m ) = ( E ` n ) ) |
43 |
40 41 42
|
cbvmpt |
|- ( m e. Z |-> ( E ` m ) ) = ( n e. Z |-> ( E ` n ) ) |
44 |
43
|
a1i |
|- ( ph -> ( m e. Z |-> ( E ` m ) ) = ( n e. Z |-> ( E ` n ) ) ) |
45 |
38 44
|
eqtrd |
|- ( ph -> E = ( n e. Z |-> ( E ` n ) ) ) |
46 |
45
|
rneqd |
|- ( ph -> ran E = ran ( n e. Z |-> ( E ` n ) ) ) |
47 |
46
|
unieqd |
|- ( ph -> U. ran E = U. ran ( n e. Z |-> ( E ` n ) ) ) |
48 |
37 47
|
eqtr4d |
|- ( ph -> U_ n e. Z ( E ` n ) = U. ran E ) |
49 |
48
|
fveq2d |
|- ( ph -> ( O ` U_ n e. Z ( E ` n ) ) = ( O ` U. ran E ) ) |
50 |
|
fnrndomg |
|- ( Z e. _V -> ( E Fn Z -> ran E ~<_ Z ) ) |
51 |
19 17 50
|
sylc |
|- ( ph -> ran E ~<_ Z ) |
52 |
5
|
uzct |
|- Z ~<_ _om |
53 |
52
|
a1i |
|- ( ph -> Z ~<_ _om ) |
54 |
|
domtr |
|- ( ( ran E ~<_ Z /\ Z ~<_ _om ) -> ran E ~<_ _om ) |
55 |
51 53 54
|
syl2anc |
|- ( ph -> ran E ~<_ _om ) |
56 |
3 4 25 55
|
omeunile |
|- ( ph -> ( O ` U. ran E ) <_ ( sum^ ` ( O |` ran E ) ) ) |
57 |
49 56
|
eqbrtrd |
|- ( ph -> ( O ` U_ n e. Z ( E ` n ) ) <_ ( sum^ ` ( O |` ran E ) ) ) |
58 |
|
ltweuz |
|- < We ( ZZ>= ` N ) |
59 |
|
weeq2 |
|- ( Z = ( ZZ>= ` N ) -> ( < We Z <-> < We ( ZZ>= ` N ) ) ) |
60 |
5 59
|
ax-mp |
|- ( < We Z <-> < We ( ZZ>= ` N ) ) |
61 |
58 60
|
mpbir |
|- < We Z |
62 |
61
|
a1i |
|- ( ph -> < We Z ) |
63 |
19 24 6 62
|
sge0resrn |
|- ( ph -> ( sum^ ` ( O |` ran E ) ) <_ ( sum^ ` ( O o. E ) ) ) |
64 |
|
fcompt |
|- ( ( O : ~P X --> ( 0 [,] +oo ) /\ E : Z --> ~P X ) -> ( O o. E ) = ( m e. Z |-> ( O ` ( E ` m ) ) ) ) |
65 |
|
nfcv |
|- F/_ n O |
66 |
65 40
|
nffv |
|- F/_ n ( O ` ( E ` m ) ) |
67 |
|
nfcv |
|- F/_ m ( O ` ( E ` n ) ) |
68 |
|
2fveq3 |
|- ( m = n -> ( O ` ( E ` m ) ) = ( O ` ( E ` n ) ) ) |
69 |
66 67 68
|
cbvmpt |
|- ( m e. Z |-> ( O ` ( E ` m ) ) ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) |
70 |
69
|
a1i |
|- ( ( O : ~P X --> ( 0 [,] +oo ) /\ E : Z --> ~P X ) -> ( m e. Z |-> ( O ` ( E ` m ) ) ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) ) |
71 |
64 70
|
eqtrd |
|- ( ( O : ~P X --> ( 0 [,] +oo ) /\ E : Z --> ~P X ) -> ( O o. E ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) ) |
72 |
24 6 71
|
syl2anc |
|- ( ph -> ( O o. E ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) ) |
73 |
72
|
fveq2d |
|- ( ph -> ( sum^ ` ( O o. E ) ) = ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) ) |
74 |
63 73
|
breqtrd |
|- ( ph -> ( sum^ ` ( O |` ran E ) ) <_ ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) ) |
75 |
16 27 32 57 74
|
xrletrd |
|- ( ph -> ( O ` U_ n e. Z ( E ` n ) ) <_ ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) ) |