Metamath Proof Explorer


Theorem omeiunle

Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeiunle.nph
|- F/ n ph
omeiunle.ne
|- F/_ n E
omeiunle.o
|- ( ph -> O e. OutMeas )
omeiunle.x
|- X = U. dom O
omeiunle.z
|- Z = ( ZZ>= ` N )
omeiunle.e
|- ( ph -> E : Z --> ~P X )
Assertion omeiunle
|- ( ph -> ( O ` U_ n e. Z ( E ` n ) ) <_ ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) )

Proof

Step Hyp Ref Expression
1 omeiunle.nph
 |-  F/ n ph
2 omeiunle.ne
 |-  F/_ n E
3 omeiunle.o
 |-  ( ph -> O e. OutMeas )
4 omeiunle.x
 |-  X = U. dom O
5 omeiunle.z
 |-  Z = ( ZZ>= ` N )
6 omeiunle.e
 |-  ( ph -> E : Z --> ~P X )
7 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
8 6 ffvelrnda
 |-  ( ( ph /\ n e. Z ) -> ( E ` n ) e. ~P X )
9 elpwi
 |-  ( ( E ` n ) e. ~P X -> ( E ` n ) C_ X )
10 8 9 syl
 |-  ( ( ph /\ n e. Z ) -> ( E ` n ) C_ X )
11 10 ex
 |-  ( ph -> ( n e. Z -> ( E ` n ) C_ X ) )
12 1 11 ralrimi
 |-  ( ph -> A. n e. Z ( E ` n ) C_ X )
13 iunss
 |-  ( U_ n e. Z ( E ` n ) C_ X <-> A. n e. Z ( E ` n ) C_ X )
14 12 13 sylibr
 |-  ( ph -> U_ n e. Z ( E ` n ) C_ X )
15 3 4 14 omecl
 |-  ( ph -> ( O ` U_ n e. Z ( E ` n ) ) e. ( 0 [,] +oo ) )
16 7 15 sseldi
 |-  ( ph -> ( O ` U_ n e. Z ( E ` n ) ) e. RR* )
17 6 ffnd
 |-  ( ph -> E Fn Z )
18 5 fvexi
 |-  Z e. _V
19 18 a1i
 |-  ( ph -> Z e. _V )
20 fnex
 |-  ( ( E Fn Z /\ Z e. _V ) -> E e. _V )
21 17 19 20 syl2anc
 |-  ( ph -> E e. _V )
22 rnexg
 |-  ( E e. _V -> ran E e. _V )
23 21 22 syl
 |-  ( ph -> ran E e. _V )
24 3 4 omef
 |-  ( ph -> O : ~P X --> ( 0 [,] +oo ) )
25 6 frnd
 |-  ( ph -> ran E C_ ~P X )
26 24 25 fssresd
 |-  ( ph -> ( O |` ran E ) : ran E --> ( 0 [,] +oo ) )
27 23 26 sge0xrcl
 |-  ( ph -> ( sum^ ` ( O |` ran E ) ) e. RR* )
28 3 adantr
 |-  ( ( ph /\ n e. Z ) -> O e. OutMeas )
29 28 4 10 omecl
 |-  ( ( ph /\ n e. Z ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) )
30 eqid
 |-  ( n e. Z |-> ( O ` ( E ` n ) ) ) = ( n e. Z |-> ( O ` ( E ` n ) ) )
31 1 29 30 fmptdf
 |-  ( ph -> ( n e. Z |-> ( O ` ( E ` n ) ) ) : Z --> ( 0 [,] +oo ) )
32 19 31 sge0xrcl
 |-  ( ph -> ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) e. RR* )
33 fvex
 |-  ( E ` n ) e. _V
34 33 rgenw
 |-  A. n e. Z ( E ` n ) e. _V
35 dfiun3g
 |-  ( A. n e. Z ( E ` n ) e. _V -> U_ n e. Z ( E ` n ) = U. ran ( n e. Z |-> ( E ` n ) ) )
36 34 35 ax-mp
 |-  U_ n e. Z ( E ` n ) = U. ran ( n e. Z |-> ( E ` n ) )
37 36 a1i
 |-  ( ph -> U_ n e. Z ( E ` n ) = U. ran ( n e. Z |-> ( E ` n ) ) )
38 6 feqmptd
 |-  ( ph -> E = ( m e. Z |-> ( E ` m ) ) )
39 nfcv
 |-  F/_ n m
40 2 39 nffv
 |-  F/_ n ( E ` m )
41 nfcv
 |-  F/_ m ( E ` n )
42 fveq2
 |-  ( m = n -> ( E ` m ) = ( E ` n ) )
43 40 41 42 cbvmpt
 |-  ( m e. Z |-> ( E ` m ) ) = ( n e. Z |-> ( E ` n ) )
44 43 a1i
 |-  ( ph -> ( m e. Z |-> ( E ` m ) ) = ( n e. Z |-> ( E ` n ) ) )
45 38 44 eqtrd
 |-  ( ph -> E = ( n e. Z |-> ( E ` n ) ) )
46 45 rneqd
 |-  ( ph -> ran E = ran ( n e. Z |-> ( E ` n ) ) )
47 46 unieqd
 |-  ( ph -> U. ran E = U. ran ( n e. Z |-> ( E ` n ) ) )
48 37 47 eqtr4d
 |-  ( ph -> U_ n e. Z ( E ` n ) = U. ran E )
49 48 fveq2d
 |-  ( ph -> ( O ` U_ n e. Z ( E ` n ) ) = ( O ` U. ran E ) )
50 fnrndomg
 |-  ( Z e. _V -> ( E Fn Z -> ran E ~<_ Z ) )
51 19 17 50 sylc
 |-  ( ph -> ran E ~<_ Z )
52 5 uzct
 |-  Z ~<_ _om
53 52 a1i
 |-  ( ph -> Z ~<_ _om )
54 domtr
 |-  ( ( ran E ~<_ Z /\ Z ~<_ _om ) -> ran E ~<_ _om )
55 51 53 54 syl2anc
 |-  ( ph -> ran E ~<_ _om )
56 3 4 25 55 omeunile
 |-  ( ph -> ( O ` U. ran E ) <_ ( sum^ ` ( O |` ran E ) ) )
57 49 56 eqbrtrd
 |-  ( ph -> ( O ` U_ n e. Z ( E ` n ) ) <_ ( sum^ ` ( O |` ran E ) ) )
58 ltweuz
 |-  < We ( ZZ>= ` N )
59 weeq2
 |-  ( Z = ( ZZ>= ` N ) -> ( < We Z <-> < We ( ZZ>= ` N ) ) )
60 5 59 ax-mp
 |-  ( < We Z <-> < We ( ZZ>= ` N ) )
61 58 60 mpbir
 |-  < We Z
62 61 a1i
 |-  ( ph -> < We Z )
63 19 24 6 62 sge0resrn
 |-  ( ph -> ( sum^ ` ( O |` ran E ) ) <_ ( sum^ ` ( O o. E ) ) )
64 fcompt
 |-  ( ( O : ~P X --> ( 0 [,] +oo ) /\ E : Z --> ~P X ) -> ( O o. E ) = ( m e. Z |-> ( O ` ( E ` m ) ) ) )
65 nfcv
 |-  F/_ n O
66 65 40 nffv
 |-  F/_ n ( O ` ( E ` m ) )
67 nfcv
 |-  F/_ m ( O ` ( E ` n ) )
68 2fveq3
 |-  ( m = n -> ( O ` ( E ` m ) ) = ( O ` ( E ` n ) ) )
69 66 67 68 cbvmpt
 |-  ( m e. Z |-> ( O ` ( E ` m ) ) ) = ( n e. Z |-> ( O ` ( E ` n ) ) )
70 69 a1i
 |-  ( ( O : ~P X --> ( 0 [,] +oo ) /\ E : Z --> ~P X ) -> ( m e. Z |-> ( O ` ( E ` m ) ) ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) )
71 64 70 eqtrd
 |-  ( ( O : ~P X --> ( 0 [,] +oo ) /\ E : Z --> ~P X ) -> ( O o. E ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) )
72 24 6 71 syl2anc
 |-  ( ph -> ( O o. E ) = ( n e. Z |-> ( O ` ( E ` n ) ) ) )
73 72 fveq2d
 |-  ( ph -> ( sum^ ` ( O o. E ) ) = ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) )
74 63 73 breqtrd
 |-  ( ph -> ( sum^ ` ( O |` ran E ) ) <_ ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) )
75 16 27 32 57 74 xrletrd
 |-  ( ph -> ( O ` U_ n e. Z ( E ` n ) ) <_ ( sum^ ` ( n e. Z |-> ( O ` ( E ` n ) ) ) ) )