Step |
Hyp |
Ref |
Expression |
1 |
|
sge0resrn.a |
|- ( ph -> A e. V ) |
2 |
|
sge0resrn.f |
|- ( ph -> F : B --> ( 0 [,] +oo ) ) |
3 |
|
sge0resrn.g |
|- ( ph -> G : A --> B ) |
4 |
|
sge0resrn.r |
|- ( ph -> R We A ) |
5 |
3
|
ffnd |
|- ( ph -> G Fn A ) |
6 |
5 1 4
|
wessf1orn |
|- ( ph -> E. x e. ~P A ( G |` x ) : x -1-1-onto-> ran G ) |
7 |
1
|
3ad2ant1 |
|- ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> A e. V ) |
8 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> F : B --> ( 0 [,] +oo ) ) |
9 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> G : A --> B ) |
10 |
|
simp2 |
|- ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> x e. ~P A ) |
11 |
|
simp3 |
|- ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> ( G |` x ) : x -1-1-onto-> ran G ) |
12 |
7 8 9 10 11
|
sge0resrnlem |
|- ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) |
13 |
12
|
3exp |
|- ( ph -> ( x e. ~P A -> ( ( G |` x ) : x -1-1-onto-> ran G -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) ) ) |
14 |
13
|
rexlimdv |
|- ( ph -> ( E. x e. ~P A ( G |` x ) : x -1-1-onto-> ran G -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) ) |
15 |
6 14
|
mpd |
|- ( ph -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) |