| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0resrn.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | sge0resrn.f |  |-  ( ph -> F : B --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | sge0resrn.g |  |-  ( ph -> G : A --> B ) | 
						
							| 4 |  | sge0resrn.r |  |-  ( ph -> R We A ) | 
						
							| 5 | 3 | ffnd |  |-  ( ph -> G Fn A ) | 
						
							| 6 | 5 1 4 | wessf1orn |  |-  ( ph -> E. x e. ~P A ( G |` x ) : x -1-1-onto-> ran G ) | 
						
							| 7 | 1 | 3ad2ant1 |  |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> A e. V ) | 
						
							| 8 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> F : B --> ( 0 [,] +oo ) ) | 
						
							| 9 | 3 | 3ad2ant1 |  |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> G : A --> B ) | 
						
							| 10 |  | simp2 |  |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> x e. ~P A ) | 
						
							| 11 |  | simp3 |  |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> ( G |` x ) : x -1-1-onto-> ran G ) | 
						
							| 12 | 7 8 9 10 11 | sge0resrnlem |  |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) | 
						
							| 13 | 12 | 3exp |  |-  ( ph -> ( x e. ~P A -> ( ( G |` x ) : x -1-1-onto-> ran G -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) ) ) | 
						
							| 14 | 13 | rexlimdv |  |-  ( ph -> ( E. x e. ~P A ( G |` x ) : x -1-1-onto-> ran G -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) ) | 
						
							| 15 | 6 14 | mpd |  |-  ( ph -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) |