Metamath Proof Explorer


Theorem sge0resrn

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrn.a
|- ( ph -> A e. V )
sge0resrn.f
|- ( ph -> F : B --> ( 0 [,] +oo ) )
sge0resrn.g
|- ( ph -> G : A --> B )
sge0resrn.r
|- ( ph -> R We A )
Assertion sge0resrn
|- ( ph -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) )

Proof

Step Hyp Ref Expression
1 sge0resrn.a
 |-  ( ph -> A e. V )
2 sge0resrn.f
 |-  ( ph -> F : B --> ( 0 [,] +oo ) )
3 sge0resrn.g
 |-  ( ph -> G : A --> B )
4 sge0resrn.r
 |-  ( ph -> R We A )
5 3 ffnd
 |-  ( ph -> G Fn A )
6 5 1 4 wessf1orn
 |-  ( ph -> E. x e. ~P A ( G |` x ) : x -1-1-onto-> ran G )
7 1 3ad2ant1
 |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> A e. V )
8 2 3ad2ant1
 |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> F : B --> ( 0 [,] +oo ) )
9 3 3ad2ant1
 |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> G : A --> B )
10 simp2
 |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> x e. ~P A )
11 simp3
 |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> ( G |` x ) : x -1-1-onto-> ran G )
12 7 8 9 10 11 sge0resrnlem
 |-  ( ( ph /\ x e. ~P A /\ ( G |` x ) : x -1-1-onto-> ran G ) -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) )
13 12 3exp
 |-  ( ph -> ( x e. ~P A -> ( ( G |` x ) : x -1-1-onto-> ran G -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) ) )
14 13 rexlimdv
 |-  ( ph -> ( E. x e. ~P A ( G |` x ) : x -1-1-onto-> ran G -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) )
15 6 14 mpd
 |-  ( ph -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) )