Step |
Hyp |
Ref |
Expression |
1 |
|
sge0resrn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
sge0resrn.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
sge0resrn.g |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
4 |
|
sge0resrn.r |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
5 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
6 |
5 1 4
|
wessf1orn |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) |
7 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) → 𝐴 ∈ 𝑉 ) |
8 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) → 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
9 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) → 𝑥 ∈ 𝒫 𝐴 ) |
11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) → ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) |
12 |
7 8 9 10 11
|
sge0resrnlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 ) → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
13 |
12
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 → ( ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) ) |
14 |
13
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐺 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐺 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
15 |
6 14
|
mpd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹 ∘ 𝐺 ) ) ) |