| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0resrn.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | sge0resrn.f | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | sge0resrn.g | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 4 |  | sge0resrn.r | ⊢ ( 𝜑  →  𝑅  We  𝐴 ) | 
						
							| 5 | 3 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐴 ) | 
						
							| 6 | 5 1 4 | wessf1orn | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝒫  𝐴 ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 ) | 
						
							| 7 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴  ∧  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 )  →  𝐴  ∈  𝑉 ) | 
						
							| 8 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴  ∧  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 )  →  𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 9 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴  ∧  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 )  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴  ∧  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 )  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴  ∧  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 )  →  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 ) | 
						
							| 12 | 7 8 9 10 11 | sge0resrnlem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴  ∧  ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺 )  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  ≤  ( Σ^ ‘ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 13 | 12 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝒫  𝐴  →  ( ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  ≤  ( Σ^ ‘ ( 𝐹  ∘  𝐺 ) ) ) ) ) | 
						
							| 14 | 13 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝒫  𝐴 ( 𝐺  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝐺  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  ≤  ( Σ^ ‘ ( 𝐹  ∘  𝐺 ) ) ) ) | 
						
							| 15 | 6 14 | mpd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  ≤  ( Σ^ ‘ ( 𝐹  ∘  𝐺 ) ) ) |