Metamath Proof Explorer


Theorem sge0resrn

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrn.a ( 𝜑𝐴𝑉 )
sge0resrn.f ( 𝜑𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) )
sge0resrn.g ( 𝜑𝐺 : 𝐴𝐵 )
sge0resrn.r ( 𝜑𝑅 We 𝐴 )
Assertion sge0resrn ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 sge0resrn.a ( 𝜑𝐴𝑉 )
2 sge0resrn.f ( 𝜑𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) )
3 sge0resrn.g ( 𝜑𝐺 : 𝐴𝐵 )
4 sge0resrn.r ( 𝜑𝑅 We 𝐴 )
5 3 ffnd ( 𝜑𝐺 Fn 𝐴 )
6 5 1 4 wessf1orn ( 𝜑 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 )
7 1 3ad2ant1 ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 ) → 𝐴𝑉 )
8 2 3ad2ant1 ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 ) → 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) )
9 3 3ad2ant1 ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 ) → 𝐺 : 𝐴𝐵 )
10 simp2 ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 ) → 𝑥 ∈ 𝒫 𝐴 )
11 simp3 ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 ) → ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 )
12 7 8 9 10 11 sge0resrnlem ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ∧ ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 ) → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) )
13 12 3exp ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 → ( ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) ) ) )
14 13 rexlimdv ( 𝜑 → ( ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐺𝑥 ) : 𝑥1-1-onto→ ran 𝐺 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) ) )
15 6 14 mpd ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) )