Metamath Proof Explorer


Theorem sge0resrn

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrn.a φAV
sge0resrn.f φF:B0+∞
sge0resrn.g φG:AB
sge0resrn.r φRWeA
Assertion sge0resrn φsum^FranGsum^FG

Proof

Step Hyp Ref Expression
1 sge0resrn.a φAV
2 sge0resrn.f φF:B0+∞
3 sge0resrn.g φG:AB
4 sge0resrn.r φRWeA
5 3 ffnd φGFnA
6 5 1 4 wessf1orn φx𝒫AGx:x1-1 ontoranG
7 1 3ad2ant1 φx𝒫AGx:x1-1 ontoranGAV
8 2 3ad2ant1 φx𝒫AGx:x1-1 ontoranGF:B0+∞
9 3 3ad2ant1 φx𝒫AGx:x1-1 ontoranGG:AB
10 simp2 φx𝒫AGx:x1-1 ontoranGx𝒫A
11 simp3 φx𝒫AGx:x1-1 ontoranGGx:x1-1 ontoranG
12 7 8 9 10 11 sge0resrnlem φx𝒫AGx:x1-1 ontoranGsum^FranGsum^FG
13 12 3exp φx𝒫AGx:x1-1 ontoranGsum^FranGsum^FG
14 13 rexlimdv φx𝒫AGx:x1-1 ontoranGsum^FranGsum^FG
15 6 14 mpd φsum^FranGsum^FG