Metamath Proof Explorer


Theorem sge0resrnlem

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrnlem.a ( 𝜑𝐴𝑉 )
sge0resrnlem.f ( 𝜑𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) )
sge0resrnlem.g ( 𝜑𝐺 : 𝐴𝐵 )
sge0resrnlem.x ( 𝜑𝑋 ∈ 𝒫 𝐴 )
sge0resrnlem.f1o ( 𝜑 → ( 𝐺𝑋 ) : 𝑋1-1-onto→ ran 𝐺 )
Assertion sge0resrnlem ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 sge0resrnlem.a ( 𝜑𝐴𝑉 )
2 sge0resrnlem.f ( 𝜑𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) )
3 sge0resrnlem.g ( 𝜑𝐺 : 𝐴𝐵 )
4 sge0resrnlem.x ( 𝜑𝑋 ∈ 𝒫 𝐴 )
5 sge0resrnlem.f1o ( 𝜑 → ( 𝐺𝑋 ) : 𝑋1-1-onto→ ran 𝐺 )
6 nfv 𝑦 𝜑
7 nfv 𝑥 𝜑
8 fveq2 ( 𝑦 = ( 𝐺𝑥 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐺𝑥 ) ) )
9 fvres ( 𝑥𝑋 → ( ( 𝐺𝑋 ) ‘ 𝑥 ) = ( 𝐺𝑥 ) )
10 9 adantl ( ( 𝜑𝑥𝑋 ) → ( ( 𝐺𝑋 ) ‘ 𝑥 ) = ( 𝐺𝑥 ) )
11 2 adantr ( ( 𝜑𝑦 ∈ ran 𝐺 ) → 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) )
12 3 frnd ( 𝜑 → ran 𝐺𝐵 )
13 12 adantr ( ( 𝜑𝑦 ∈ ran 𝐺 ) → ran 𝐺𝐵 )
14 simpr ( ( 𝜑𝑦 ∈ ran 𝐺 ) → 𝑦 ∈ ran 𝐺 )
15 13 14 sseldd ( ( 𝜑𝑦 ∈ ran 𝐺 ) → 𝑦𝐵 )
16 11 15 ffvelrnd ( ( 𝜑𝑦 ∈ ran 𝐺 ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
17 6 7 8 4 5 10 16 sge0f1o ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ ran 𝐺 ↦ ( 𝐹𝑦 ) ) ) = ( Σ^ ‘ ( 𝑥𝑋 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ) )
18 2 12 feqresmpt ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) = ( 𝑦 ∈ ran 𝐺 ↦ ( 𝐹𝑦 ) ) )
19 18 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ran 𝐺 ↦ ( 𝐹𝑦 ) ) ) )
20 fcompt ( ( 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : 𝐴𝐵 ) → ( 𝐹𝐺 ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) )
21 2 3 20 syl2anc ( 𝜑 → ( 𝐹𝐺 ) = ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) )
22 21 reseq1d ( 𝜑 → ( ( 𝐹𝐺 ) ↾ 𝑋 ) = ( ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ↾ 𝑋 ) )
23 4 elpwid ( 𝜑𝑋𝐴 )
24 23 resmptd ( 𝜑 → ( ( 𝑥𝐴 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ↾ 𝑋 ) = ( 𝑥𝑋 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) )
25 22 24 eqtrd ( 𝜑 → ( ( 𝐹𝐺 ) ↾ 𝑋 ) = ( 𝑥𝑋 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) )
26 25 fveq2d ( 𝜑 → ( Σ^ ‘ ( ( 𝐹𝐺 ) ↾ 𝑋 ) ) = ( Σ^ ‘ ( 𝑥𝑋 ↦ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ) )
27 17 19 26 3eqtr4d ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) = ( Σ^ ‘ ( ( 𝐹𝐺 ) ↾ 𝑋 ) ) )
28 fco ( ( 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : 𝐴𝐵 ) → ( 𝐹𝐺 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
29 2 3 28 syl2anc ( 𝜑 → ( 𝐹𝐺 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
30 1 29 sge0less ( 𝜑 → ( Σ^ ‘ ( ( 𝐹𝐺 ) ↾ 𝑋 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) )
31 27 30 eqbrtrd ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹𝐺 ) ) )