| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0resrnlem.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | sge0resrnlem.f | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | sge0resrnlem.g | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 4 |  | sge0resrnlem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝒫  𝐴 ) | 
						
							| 5 |  | sge0resrnlem.f1o | ⊢ ( 𝜑  →  ( 𝐺  ↾  𝑋 ) : 𝑋 –1-1-onto→ ran  𝐺 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑥 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 9 |  | fvres | ⊢ ( 𝑥  ∈  𝑋  →  ( ( 𝐺  ↾  𝑋 ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐺  ↾  𝑋 ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 12 | 3 | frnd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  𝐵 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  ran  𝐺  ⊆  𝐵 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  𝑦  ∈  ran  𝐺 ) | 
						
							| 15 | 13 14 | sseldd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  𝑦  ∈  𝐵 ) | 
						
							| 16 | 11 15 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  𝐺 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 17 | 6 7 8 4 5 10 16 | sge0f1o | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑦  ∈  ran  𝐺  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 18 | 2 12 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ran  𝐺 )  =  ( 𝑦  ∈  ran  𝐺  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  =  ( Σ^ ‘ ( 𝑦  ∈  ran  𝐺  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 20 |  | fcompt | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ )  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝐺 )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 21 | 2 3 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 22 | 21 | reseq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 )  ↾  𝑋 )  =  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ↾  𝑋 ) ) | 
						
							| 23 | 4 | elpwid | ⊢ ( 𝜑  →  𝑋  ⊆  𝐴 ) | 
						
							| 24 | 23 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ↾  𝑋 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 )  ↾  𝑋 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( ( 𝐹  ∘  𝐺 )  ↾  𝑋 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 27 | 17 19 26 | 3eqtr4d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  =  ( Σ^ ‘ ( ( 𝐹  ∘  𝐺 )  ↾  𝑋 ) ) ) | 
						
							| 28 |  | fco | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ )  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 29 | 2 3 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 30 | 1 29 | sge0less | ⊢ ( 𝜑  →  ( Σ^ ‘ ( ( 𝐹  ∘  𝐺 )  ↾  𝑋 ) )  ≤  ( Σ^ ‘ ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 31 | 27 30 | eqbrtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝐹  ↾  ran  𝐺 ) )  ≤  ( Σ^ ‘ ( 𝐹  ∘  𝐺 ) ) ) |