| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0resrnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
sge0resrnlem.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
sge0resrnlem.g |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 4 |
|
sge0resrnlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝐴 ) |
| 5 |
|
sge0resrnlem.f1o |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝑋 ) : 𝑋 –1-1-onto→ ran 𝐺 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 7 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 8 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 9 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐺 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 12 |
3
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ 𝐵 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → ran 𝐺 ⊆ 𝐵 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → 𝑦 ∈ ran 𝐺 ) |
| 15 |
13 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → 𝑦 ∈ 𝐵 ) |
| 16 |
11 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 17 |
6 7 8 4 5 10 16
|
sge0f1o |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ ran 𝐺 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 18 |
2 12
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) = ( 𝑦 ∈ ran 𝐺 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) = ( Σ^ ‘ ( 𝑦 ∈ ran 𝐺 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 20 |
|
fcompt |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 21 |
2 3 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 22 |
21
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝑋 ) ) |
| 23 |
4
|
elpwid |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 24 |
23
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 25 |
22 24
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑋 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 27 |
17 19 26
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) = ( Σ^ ‘ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑋 ) ) ) |
| 28 |
|
fco |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 29 |
2 3 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 30 |
1 29
|
sge0less |
⊢ ( 𝜑 → ( Σ^ ‘ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑋 ) ) ≤ ( Σ^ ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
| 31 |
27 30
|
eqbrtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ ran 𝐺 ) ) ≤ ( Σ^ ‘ ( 𝐹 ∘ 𝐺 ) ) ) |