Step |
Hyp |
Ref |
Expression |
1 |
|
sge0resrnlem.a |
|- ( ph -> A e. V ) |
2 |
|
sge0resrnlem.f |
|- ( ph -> F : B --> ( 0 [,] +oo ) ) |
3 |
|
sge0resrnlem.g |
|- ( ph -> G : A --> B ) |
4 |
|
sge0resrnlem.x |
|- ( ph -> X e. ~P A ) |
5 |
|
sge0resrnlem.f1o |
|- ( ph -> ( G |` X ) : X -1-1-onto-> ran G ) |
6 |
|
nfv |
|- F/ y ph |
7 |
|
nfv |
|- F/ x ph |
8 |
|
fveq2 |
|- ( y = ( G ` x ) -> ( F ` y ) = ( F ` ( G ` x ) ) ) |
9 |
|
fvres |
|- ( x e. X -> ( ( G |` X ) ` x ) = ( G ` x ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ x e. X ) -> ( ( G |` X ) ` x ) = ( G ` x ) ) |
11 |
2
|
adantr |
|- ( ( ph /\ y e. ran G ) -> F : B --> ( 0 [,] +oo ) ) |
12 |
3
|
frnd |
|- ( ph -> ran G C_ B ) |
13 |
12
|
adantr |
|- ( ( ph /\ y e. ran G ) -> ran G C_ B ) |
14 |
|
simpr |
|- ( ( ph /\ y e. ran G ) -> y e. ran G ) |
15 |
13 14
|
sseldd |
|- ( ( ph /\ y e. ran G ) -> y e. B ) |
16 |
11 15
|
ffvelrnd |
|- ( ( ph /\ y e. ran G ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
17 |
6 7 8 4 5 10 16
|
sge0f1o |
|- ( ph -> ( sum^ ` ( y e. ran G |-> ( F ` y ) ) ) = ( sum^ ` ( x e. X |-> ( F ` ( G ` x ) ) ) ) ) |
18 |
2 12
|
feqresmpt |
|- ( ph -> ( F |` ran G ) = ( y e. ran G |-> ( F ` y ) ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( sum^ ` ( F |` ran G ) ) = ( sum^ ` ( y e. ran G |-> ( F ` y ) ) ) ) |
20 |
|
fcompt |
|- ( ( F : B --> ( 0 [,] +oo ) /\ G : A --> B ) -> ( F o. G ) = ( x e. A |-> ( F ` ( G ` x ) ) ) ) |
21 |
2 3 20
|
syl2anc |
|- ( ph -> ( F o. G ) = ( x e. A |-> ( F ` ( G ` x ) ) ) ) |
22 |
21
|
reseq1d |
|- ( ph -> ( ( F o. G ) |` X ) = ( ( x e. A |-> ( F ` ( G ` x ) ) ) |` X ) ) |
23 |
4
|
elpwid |
|- ( ph -> X C_ A ) |
24 |
23
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( F ` ( G ` x ) ) ) |` X ) = ( x e. X |-> ( F ` ( G ` x ) ) ) ) |
25 |
22 24
|
eqtrd |
|- ( ph -> ( ( F o. G ) |` X ) = ( x e. X |-> ( F ` ( G ` x ) ) ) ) |
26 |
25
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( F o. G ) |` X ) ) = ( sum^ ` ( x e. X |-> ( F ` ( G ` x ) ) ) ) ) |
27 |
17 19 26
|
3eqtr4d |
|- ( ph -> ( sum^ ` ( F |` ran G ) ) = ( sum^ ` ( ( F o. G ) |` X ) ) ) |
28 |
|
fco |
|- ( ( F : B --> ( 0 [,] +oo ) /\ G : A --> B ) -> ( F o. G ) : A --> ( 0 [,] +oo ) ) |
29 |
2 3 28
|
syl2anc |
|- ( ph -> ( F o. G ) : A --> ( 0 [,] +oo ) ) |
30 |
1 29
|
sge0less |
|- ( ph -> ( sum^ ` ( ( F o. G ) |` X ) ) <_ ( sum^ ` ( F o. G ) ) ) |
31 |
27 30
|
eqbrtrd |
|- ( ph -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) |