| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0resrnlem.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | sge0resrnlem.f |  |-  ( ph -> F : B --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | sge0resrnlem.g |  |-  ( ph -> G : A --> B ) | 
						
							| 4 |  | sge0resrnlem.x |  |-  ( ph -> X e. ~P A ) | 
						
							| 5 |  | sge0resrnlem.f1o |  |-  ( ph -> ( G |` X ) : X -1-1-onto-> ran G ) | 
						
							| 6 |  | nfv |  |-  F/ y ph | 
						
							| 7 |  | nfv |  |-  F/ x ph | 
						
							| 8 |  | fveq2 |  |-  ( y = ( G ` x ) -> ( F ` y ) = ( F ` ( G ` x ) ) ) | 
						
							| 9 |  | fvres |  |-  ( x e. X -> ( ( G |` X ) ` x ) = ( G ` x ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ x e. X ) -> ( ( G |` X ) ` x ) = ( G ` x ) ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ y e. ran G ) -> F : B --> ( 0 [,] +oo ) ) | 
						
							| 12 | 3 | frnd |  |-  ( ph -> ran G C_ B ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ y e. ran G ) -> ran G C_ B ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ y e. ran G ) -> y e. ran G ) | 
						
							| 15 | 13 14 | sseldd |  |-  ( ( ph /\ y e. ran G ) -> y e. B ) | 
						
							| 16 | 11 15 | ffvelcdmd |  |-  ( ( ph /\ y e. ran G ) -> ( F ` y ) e. ( 0 [,] +oo ) ) | 
						
							| 17 | 6 7 8 4 5 10 16 | sge0f1o |  |-  ( ph -> ( sum^ ` ( y e. ran G |-> ( F ` y ) ) ) = ( sum^ ` ( x e. X |-> ( F ` ( G ` x ) ) ) ) ) | 
						
							| 18 | 2 12 | feqresmpt |  |-  ( ph -> ( F |` ran G ) = ( y e. ran G |-> ( F ` y ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( sum^ ` ( F |` ran G ) ) = ( sum^ ` ( y e. ran G |-> ( F ` y ) ) ) ) | 
						
							| 20 |  | fcompt |  |-  ( ( F : B --> ( 0 [,] +oo ) /\ G : A --> B ) -> ( F o. G ) = ( x e. A |-> ( F ` ( G ` x ) ) ) ) | 
						
							| 21 | 2 3 20 | syl2anc |  |-  ( ph -> ( F o. G ) = ( x e. A |-> ( F ` ( G ` x ) ) ) ) | 
						
							| 22 | 21 | reseq1d |  |-  ( ph -> ( ( F o. G ) |` X ) = ( ( x e. A |-> ( F ` ( G ` x ) ) ) |` X ) ) | 
						
							| 23 | 4 | elpwid |  |-  ( ph -> X C_ A ) | 
						
							| 24 | 23 | resmptd |  |-  ( ph -> ( ( x e. A |-> ( F ` ( G ` x ) ) ) |` X ) = ( x e. X |-> ( F ` ( G ` x ) ) ) ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( ph -> ( ( F o. G ) |` X ) = ( x e. X |-> ( F ` ( G ` x ) ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ph -> ( sum^ ` ( ( F o. G ) |` X ) ) = ( sum^ ` ( x e. X |-> ( F ` ( G ` x ) ) ) ) ) | 
						
							| 27 | 17 19 26 | 3eqtr4d |  |-  ( ph -> ( sum^ ` ( F |` ran G ) ) = ( sum^ ` ( ( F o. G ) |` X ) ) ) | 
						
							| 28 |  | fco |  |-  ( ( F : B --> ( 0 [,] +oo ) /\ G : A --> B ) -> ( F o. G ) : A --> ( 0 [,] +oo ) ) | 
						
							| 29 | 2 3 28 | syl2anc |  |-  ( ph -> ( F o. G ) : A --> ( 0 [,] +oo ) ) | 
						
							| 30 | 1 29 | sge0less |  |-  ( ph -> ( sum^ ` ( ( F o. G ) |` X ) ) <_ ( sum^ ` ( F o. G ) ) ) | 
						
							| 31 | 27 30 | eqbrtrd |  |-  ( ph -> ( sum^ ` ( F |` ran G ) ) <_ ( sum^ ` ( F o. G ) ) ) |