Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ssrempt.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sge0ssrempt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0ssrempt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
sge0ssrempt.re |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
5 |
|
sge0ssrempt.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
6 |
5
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) ) |
8 |
7
|
eqcomd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) = ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
1 3 9
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
11 |
2 10 4
|
sge0ssre |
⊢ ( 𝜑 → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) ) ∈ ℝ ) |
12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) ∈ ℝ ) |