Metamath Proof Explorer


Theorem sge0ssrempt

Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ssrempt.xph 𝑥 𝜑
sge0ssrempt.a ( 𝜑𝐴𝑉 )
sge0ssrempt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
sge0ssrempt.re ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ )
sge0ssrempt.c ( 𝜑𝐶𝐴 )
Assertion sge0ssrempt ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐶𝐵 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 sge0ssrempt.xph 𝑥 𝜑
2 sge0ssrempt.a ( 𝜑𝐴𝑉 )
3 sge0ssrempt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 sge0ssrempt.re ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ )
5 sge0ssrempt.c ( 𝜑𝐶𝐴 )
6 5 resmptd ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) = ( 𝑥𝐶𝐵 ) )
7 6 fveq2d ( 𝜑 → ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) ) = ( Σ^ ‘ ( 𝑥𝐶𝐵 ) ) )
8 7 eqcomd ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐶𝐵 ) ) = ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) ) )
9 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
10 1 3 9 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
11 2 10 4 sge0ssre ( 𝜑 → ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) ) ∈ ℝ )
12 8 11 eqeltrd ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐶𝐵 ) ) ∈ ℝ )