Metamath Proof Explorer


Theorem sge0ssrempt

Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ssrempt.xph
|- F/ x ph
sge0ssrempt.a
|- ( ph -> A e. V )
sge0ssrempt.b
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) )
sge0ssrempt.re
|- ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. RR )
sge0ssrempt.c
|- ( ph -> C C_ A )
Assertion sge0ssrempt
|- ( ph -> ( sum^ ` ( x e. C |-> B ) ) e. RR )

Proof

Step Hyp Ref Expression
1 sge0ssrempt.xph
 |-  F/ x ph
2 sge0ssrempt.a
 |-  ( ph -> A e. V )
3 sge0ssrempt.b
 |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) )
4 sge0ssrempt.re
 |-  ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. RR )
5 sge0ssrempt.c
 |-  ( ph -> C C_ A )
6 5 resmptd
 |-  ( ph -> ( ( x e. A |-> B ) |` C ) = ( x e. C |-> B ) )
7 6 fveq2d
 |-  ( ph -> ( sum^ ` ( ( x e. A |-> B ) |` C ) ) = ( sum^ ` ( x e. C |-> B ) ) )
8 7 eqcomd
 |-  ( ph -> ( sum^ ` ( x e. C |-> B ) ) = ( sum^ ` ( ( x e. A |-> B ) |` C ) ) )
9 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
10 1 3 9 fmptdf
 |-  ( ph -> ( x e. A |-> B ) : A --> ( 0 [,] +oo ) )
11 2 10 4 sge0ssre
 |-  ( ph -> ( sum^ ` ( ( x e. A |-> B ) |` C ) ) e. RR )
12 8 11 eqeltrd
 |-  ( ph -> ( sum^ ` ( x e. C |-> B ) ) e. RR )