| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omeiunle.nph | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | omeiunle.ne | ⊢ Ⅎ 𝑛 𝐸 | 
						
							| 3 |  | omeiunle.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 4 |  | omeiunle.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 5 |  | omeiunle.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 6 |  | omeiunle.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ 𝒫  𝑋 ) | 
						
							| 7 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 8 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ∈  𝒫  𝑋 ) | 
						
							| 9 |  | elpwi | ⊢ ( ( 𝐸 ‘ 𝑛 )  ∈  𝒫  𝑋  →  ( 𝐸 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  →  ( 𝐸 ‘ 𝑛 )  ⊆  𝑋 ) ) | 
						
							| 12 | 1 11 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 13 |  | iunss | ⊢ ( ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  𝑋  ↔  ∀ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 15 | 3 4 14 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 16 | 7 15 | sselid | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 17 | 6 | ffnd | ⊢ ( 𝜑  →  𝐸  Fn  𝑍 ) | 
						
							| 18 | 5 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 20 |  | fnex | ⊢ ( ( 𝐸  Fn  𝑍  ∧  𝑍  ∈  V )  →  𝐸  ∈  V ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 22 |  | rnexg | ⊢ ( 𝐸  ∈  V  →  ran  𝐸  ∈  V ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ran  𝐸  ∈  V ) | 
						
							| 24 | 3 4 | omef | ⊢ ( 𝜑  →  𝑂 : 𝒫  𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 25 | 6 | frnd | ⊢ ( 𝜑  →  ran  𝐸  ⊆  𝒫  𝑋 ) | 
						
							| 26 | 24 25 | fssresd | ⊢ ( 𝜑  →  ( 𝑂  ↾  ran  𝐸 ) : ran  𝐸 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 27 | 23 26 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ↾  ran  𝐸 ) )  ∈  ℝ* ) | 
						
							| 28 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑂  ∈  OutMeas ) | 
						
							| 29 | 28 4 10 | omecl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 31 | 1 29 30 | fmptdf | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : 𝑍 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 32 | 19 31 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  ∈  ℝ* ) | 
						
							| 33 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 34 | 33 | rgenw | ⊢ ∀ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 35 |  | dfiun3g | ⊢ ( ∀ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  V  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  =  ∪  ran  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  =  ∪  ran  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 37 | 36 | a1i | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  =  ∪  ran  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 38 | 6 | feqmptd | ⊢ ( 𝜑  →  𝐸  =  ( 𝑚  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑛 𝑚 | 
						
							| 40 | 2 39 | nffv | ⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑚 ) | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑚 ( 𝐸 ‘ 𝑛 ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐸 ‘ 𝑚 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 43 | 40 41 42 | cbvmpt | ⊢ ( 𝑚  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑚 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑚 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 45 | 38 44 | eqtrd | ⊢ ( 𝜑  →  𝐸  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 46 | 45 | rneqd | ⊢ ( 𝜑  →  ran  𝐸  =  ran  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 47 | 46 | unieqd | ⊢ ( 𝜑  →  ∪  ran  𝐸  =  ∪  ran  ( 𝑛  ∈  𝑍  ↦  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 48 | 37 47 | eqtr4d | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  =  ∪  ran  𝐸 ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑂 ‘ ∪  ran  𝐸 ) ) | 
						
							| 50 |  | fnrndomg | ⊢ ( 𝑍  ∈  V  →  ( 𝐸  Fn  𝑍  →  ran  𝐸  ≼  𝑍 ) ) | 
						
							| 51 | 19 17 50 | sylc | ⊢ ( 𝜑  →  ran  𝐸  ≼  𝑍 ) | 
						
							| 52 | 5 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 53 | 52 | a1i | ⊢ ( 𝜑  →  𝑍  ≼  ω ) | 
						
							| 54 |  | domtr | ⊢ ( ( ran  𝐸  ≼  𝑍  ∧  𝑍  ≼  ω )  →  ran  𝐸  ≼  ω ) | 
						
							| 55 | 51 53 54 | syl2anc | ⊢ ( 𝜑  →  ran  𝐸  ≼  ω ) | 
						
							| 56 | 3 4 25 55 | omeunile | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  ran  𝐸 )  ≤  ( Σ^ ‘ ( 𝑂  ↾  ran  𝐸 ) ) ) | 
						
							| 57 | 49 56 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ≤  ( Σ^ ‘ ( 𝑂  ↾  ran  𝐸 ) ) ) | 
						
							| 58 |  | ltweuz | ⊢  <   We  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 59 |  | weeq2 | ⊢ ( 𝑍  =  ( ℤ≥ ‘ 𝑁 )  →  (  <   We  𝑍  ↔   <   We  ( ℤ≥ ‘ 𝑁 ) ) ) | 
						
							| 60 | 5 59 | ax-mp | ⊢ (  <   We  𝑍  ↔   <   We  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 61 | 58 60 | mpbir | ⊢  <   We  𝑍 | 
						
							| 62 | 61 | a1i | ⊢ ( 𝜑  →   <   We  𝑍 ) | 
						
							| 63 | 19 24 6 62 | sge0resrn | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ↾  ran  𝐸 ) )  ≤  ( Σ^ ‘ ( 𝑂  ∘  𝐸 ) ) ) | 
						
							| 64 |  | fcompt | ⊢ ( ( 𝑂 : 𝒫  𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝐸 : 𝑍 ⟶ 𝒫  𝑋 )  →  ( 𝑂  ∘  𝐸 )  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 65 |  | nfcv | ⊢ Ⅎ 𝑛 𝑂 | 
						
							| 66 | 65 40 | nffv | ⊢ Ⅎ 𝑛 ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) | 
						
							| 67 |  | nfcv | ⊢ Ⅎ 𝑚 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 68 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) )  =  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 69 | 66 67 68 | cbvmpt | ⊢ ( 𝑚  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 70 | 69 | a1i | ⊢ ( ( 𝑂 : 𝒫  𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝐸 : 𝑍 ⟶ 𝒫  𝑋 )  →  ( 𝑚  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 71 | 64 70 | eqtrd | ⊢ ( ( 𝑂 : 𝒫  𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝐸 : 𝑍 ⟶ 𝒫  𝑋 )  →  ( 𝑂  ∘  𝐸 )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 72 | 24 6 71 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂  ∘  𝐸 )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ∘  𝐸 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 74 | 63 73 | breqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ↾  ran  𝐸 ) )  ≤  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 75 | 16 27 32 57 74 | xrletrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ≤  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |