| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omelesplit.1 |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
omelesplit.2 |
⊢ 𝑋 = ∪ dom 𝑂 |
| 3 |
|
omelesplit.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 4 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 |
| 5 |
4
|
eqcomi |
⊢ 𝐴 = ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) ) ) |
| 8 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∩ 𝐸 ) ⊆ 𝑋 ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐸 ) ⊆ 𝑋 ) |
| 10 |
3
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐸 ) ⊆ 𝑋 ) |
| 11 |
1 2 9 10
|
omeunle |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) ) ≤ ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |
| 12 |
7 11
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |