Metamath Proof Explorer


Theorem omelesplit

Description: The outer measure of a set A is less than or equal to the extended addition of the outer measures of the decomposition induced on A by any E . Step (a) in the proof of Caratheodory's Method, Theorem 113C of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omelesplit.1 ( 𝜑𝑂 ∈ OutMeas )
omelesplit.2 𝑋 = dom 𝑂
omelesplit.3 ( 𝜑𝐴𝑋 )
Assertion omelesplit ( 𝜑 → ( 𝑂𝐴 ) ≤ ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) )

Proof

Step Hyp Ref Expression
1 omelesplit.1 ( 𝜑𝑂 ∈ OutMeas )
2 omelesplit.2 𝑋 = dom 𝑂
3 omelesplit.3 ( 𝜑𝐴𝑋 )
4 inundif ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴
5 4 eqcomi 𝐴 = ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) )
6 5 a1i ( 𝜑𝐴 = ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) )
7 6 fveq2d ( 𝜑 → ( 𝑂𝐴 ) = ( 𝑂 ‘ ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) ) )
8 ssinss1 ( 𝐴𝑋 → ( 𝐴𝐸 ) ⊆ 𝑋 )
9 3 8 syl ( 𝜑 → ( 𝐴𝐸 ) ⊆ 𝑋 )
10 3 ssdifssd ( 𝜑 → ( 𝐴𝐸 ) ⊆ 𝑋 )
11 1 2 9 10 omeunle ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) ) ≤ ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) )
12 7 11 eqbrtrd ( 𝜑 → ( 𝑂𝐴 ) ≤ ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) )