Step |
Hyp |
Ref |
Expression |
1 |
|
omelesplit.1 |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
omelesplit.2 |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
omelesplit.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
4 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 |
5 |
4
|
eqcomi |
⊢ 𝐴 = ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) ) ) |
8 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∩ 𝐸 ) ⊆ 𝑋 ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐸 ) ⊆ 𝑋 ) |
10 |
3
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐸 ) ⊆ 𝑋 ) |
11 |
1 2 9 10
|
omeunle |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) ) ≤ ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |
12 |
7 11
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |