| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omeunle.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | omeunle.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 3 |  | omeunle.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) | 
						
							| 4 |  | omeunle.b | ⊢ ( 𝜑  →  𝐵  ⊆  𝑋 ) | 
						
							| 5 | 1 2 | unidmex | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 6 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑋  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 8 |  | ssexg | ⊢ ( ( 𝐵  ⊆  𝑋  ∧  𝑋  ∈  V )  →  𝐵  ∈  V ) | 
						
							| 9 | 4 5 8 | syl2anc | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 10 |  | uniprg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( 𝜑  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  =  ∪  { 𝐴 ,  𝐵 } ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∪  𝐵 ) )  =  ( 𝑂 ‘ ∪  { 𝐴 ,  𝐵 } ) ) | 
						
							| 14 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 15 | 3 4 | unssd | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  ⊆  𝑋 ) | 
						
							| 16 | 11 15 | eqsstrd | ⊢ ( 𝜑  →  ∪  { 𝐴 ,  𝐵 }  ⊆  𝑋 ) | 
						
							| 17 | 1 2 16 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  { 𝐴 ,  𝐵 } )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 18 | 14 17 | sselid | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  { 𝐴 ,  𝐵 } )  ∈  ℝ* ) | 
						
							| 19 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 20 | 19 | elexi | ⊢ { 𝐴 ,  𝐵 }  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ∈  V ) | 
						
							| 22 | 1 2 | omef | ⊢ ( 𝜑  →  𝑂 : 𝒫  𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 23 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  𝑋  ↔  𝐴  ⊆  𝑋 ) ) | 
						
							| 24 | 7 23 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  𝑋  ↔  𝐴  ⊆  𝑋 ) ) | 
						
							| 25 | 3 24 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  𝒫  𝑋 ) | 
						
							| 26 |  | elpwg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  𝒫  𝑋  ↔  𝐵  ⊆  𝑋 ) ) | 
						
							| 27 | 9 26 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  𝒫  𝑋  ↔  𝐵  ⊆  𝑋 ) ) | 
						
							| 28 | 4 27 | mpbird | ⊢ ( 𝜑  →  𝐵  ∈  𝒫  𝑋 ) | 
						
							| 29 | 25 28 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  𝑋  ∧  𝐵  ∈  𝒫  𝑋 ) ) | 
						
							| 30 |  | prssg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ( 𝐴  ∈  𝒫  𝑋  ∧  𝐵  ∈  𝒫  𝑋 )  ↔  { 𝐴 ,  𝐵 }  ⊆  𝒫  𝑋 ) ) | 
						
							| 31 | 7 9 30 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  𝒫  𝑋  ∧  𝐵  ∈  𝒫  𝑋 )  ↔  { 𝐴 ,  𝐵 }  ⊆  𝒫  𝑋 ) ) | 
						
							| 32 | 29 31 | mpbid | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ⊆  𝒫  𝑋 ) | 
						
							| 33 | 22 32 | fssresd | ⊢ ( 𝜑  →  ( 𝑂  ↾  { 𝐴 ,  𝐵 } ) : { 𝐴 ,  𝐵 } ⟶ ( 0 [,] +∞ ) ) | 
						
							| 34 | 21 33 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ↾  { 𝐴 ,  𝐵 } ) )  ∈  ℝ* ) | 
						
							| 35 | 1 2 3 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 36 | 14 35 | sselid | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 37 | 1 2 4 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 38 | 14 37 | sselid | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 39 | 36 38 | xaddcld | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  +𝑒  ( 𝑂 ‘ 𝐵 ) )  ∈  ℝ* ) | 
						
							| 40 |  | isfinite | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  ↔  { 𝐴 ,  𝐵 }  ≺  ω ) | 
						
							| 41 | 40 | biimpi | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  { 𝐴 ,  𝐵 }  ≺  ω ) | 
						
							| 42 |  | sdomdom | ⊢ ( { 𝐴 ,  𝐵 }  ≺  ω  →  { 𝐴 ,  𝐵 }  ≼  ω ) | 
						
							| 43 | 41 42 | syl | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  { 𝐴 ,  𝐵 }  ≼  ω ) | 
						
							| 44 | 19 43 | ax-mp | ⊢ { 𝐴 ,  𝐵 }  ≼  ω | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ≼  ω ) | 
						
							| 46 | 1 2 32 45 | omeunile | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  { 𝐴 ,  𝐵 } )  ≤  ( Σ^ ‘ ( 𝑂  ↾  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 47 | 22 32 | feqresmpt | ⊢ ( 𝜑  →  ( 𝑂  ↾  { 𝐴 ,  𝐵 } )  =  ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑂 ‘ 𝑘 ) ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ↾  { 𝐴 ,  𝐵 } ) )  =  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑂 ‘ 𝑘 ) ) ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑘  =  𝐴  →  ( 𝑂 ‘ 𝑘 )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑘  =  𝐵  →  ( 𝑂 ‘ 𝑘 )  =  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 51 | 7 9 35 37 49 50 | sge0prle | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  { 𝐴 ,  𝐵 }  ↦  ( 𝑂 ‘ 𝑘 ) ) )  ≤  ( ( 𝑂 ‘ 𝐴 )  +𝑒  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 52 | 48 51 | eqbrtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑂  ↾  { 𝐴 ,  𝐵 } ) )  ≤  ( ( 𝑂 ‘ 𝐴 )  +𝑒  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 53 | 18 34 39 46 52 | xrletrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  { 𝐴 ,  𝐵 } )  ≤  ( ( 𝑂 ‘ 𝐴 )  +𝑒  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 54 | 13 53 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∪  𝐵 ) )  ≤  ( ( 𝑂 ‘ 𝐴 )  +𝑒  ( 𝑂 ‘ 𝐵 ) ) ) |