Metamath Proof Explorer


Theorem omeunle

Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeunle.o ( 𝜑𝑂 ∈ OutMeas )
omeunle.x 𝑋 = dom 𝑂
omeunle.a ( 𝜑𝐴𝑋 )
omeunle.b ( 𝜑𝐵𝑋 )
Assertion omeunle ( 𝜑 → ( 𝑂 ‘ ( 𝐴𝐵 ) ) ≤ ( ( 𝑂𝐴 ) +𝑒 ( 𝑂𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 omeunle.o ( 𝜑𝑂 ∈ OutMeas )
2 omeunle.x 𝑋 = dom 𝑂
3 omeunle.a ( 𝜑𝐴𝑋 )
4 omeunle.b ( 𝜑𝐵𝑋 )
5 1 2 unidmex ( 𝜑𝑋 ∈ V )
6 ssexg ( ( 𝐴𝑋𝑋 ∈ V ) → 𝐴 ∈ V )
7 3 5 6 syl2anc ( 𝜑𝐴 ∈ V )
8 ssexg ( ( 𝐵𝑋𝑋 ∈ V ) → 𝐵 ∈ V )
9 4 5 8 syl2anc ( 𝜑𝐵 ∈ V )
10 uniprg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
11 7 9 10 syl2anc ( 𝜑 { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
12 11 eqcomd ( 𝜑 → ( 𝐴𝐵 ) = { 𝐴 , 𝐵 } )
13 12 fveq2d ( 𝜑 → ( 𝑂 ‘ ( 𝐴𝐵 ) ) = ( 𝑂 { 𝐴 , 𝐵 } ) )
14 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
15 3 4 unssd ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝑋 )
16 11 15 eqsstrd ( 𝜑 { 𝐴 , 𝐵 } ⊆ 𝑋 )
17 1 2 16 omecl ( 𝜑 → ( 𝑂 { 𝐴 , 𝐵 } ) ∈ ( 0 [,] +∞ ) )
18 14 17 sseldi ( 𝜑 → ( 𝑂 { 𝐴 , 𝐵 } ) ∈ ℝ* )
19 prfi { 𝐴 , 𝐵 } ∈ Fin
20 19 elexi { 𝐴 , 𝐵 } ∈ V
21 20 a1i ( 𝜑 → { 𝐴 , 𝐵 } ∈ V )
22 1 2 omef ( 𝜑𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) )
23 elpwg ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
24 7 23 syl ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
25 3 24 mpbird ( 𝜑𝐴 ∈ 𝒫 𝑋 )
26 elpwg ( 𝐵 ∈ V → ( 𝐵 ∈ 𝒫 𝑋𝐵𝑋 ) )
27 9 26 syl ( 𝜑 → ( 𝐵 ∈ 𝒫 𝑋𝐵𝑋 ) )
28 4 27 mpbird ( 𝜑𝐵 ∈ 𝒫 𝑋 )
29 25 28 jca ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) )
30 prssg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝒫 𝑋 ) )
31 7 9 30 syl2anc ( 𝜑 → ( ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝒫 𝑋 ) )
32 29 31 mpbid ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝒫 𝑋 )
33 22 32 fssresd ( 𝜑 → ( 𝑂 ↾ { 𝐴 , 𝐵 } ) : { 𝐴 , 𝐵 } ⟶ ( 0 [,] +∞ ) )
34 21 33 sge0xrcl ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) ∈ ℝ* )
35 1 2 3 omecl ( 𝜑 → ( 𝑂𝐴 ) ∈ ( 0 [,] +∞ ) )
36 14 35 sseldi ( 𝜑 → ( 𝑂𝐴 ) ∈ ℝ* )
37 1 2 4 omecl ( 𝜑 → ( 𝑂𝐵 ) ∈ ( 0 [,] +∞ ) )
38 14 37 sseldi ( 𝜑 → ( 𝑂𝐵 ) ∈ ℝ* )
39 36 38 xaddcld ( 𝜑 → ( ( 𝑂𝐴 ) +𝑒 ( 𝑂𝐵 ) ) ∈ ℝ* )
40 isfinite ( { 𝐴 , 𝐵 } ∈ Fin ↔ { 𝐴 , 𝐵 } ≺ ω )
41 40 biimpi ( { 𝐴 , 𝐵 } ∈ Fin → { 𝐴 , 𝐵 } ≺ ω )
42 sdomdom ( { 𝐴 , 𝐵 } ≺ ω → { 𝐴 , 𝐵 } ≼ ω )
43 41 42 syl ( { 𝐴 , 𝐵 } ∈ Fin → { 𝐴 , 𝐵 } ≼ ω )
44 19 43 ax-mp { 𝐴 , 𝐵 } ≼ ω
45 44 a1i ( 𝜑 → { 𝐴 , 𝐵 } ≼ ω )
46 1 2 32 45 omeunile ( 𝜑 → ( 𝑂 { 𝐴 , 𝐵 } ) ≤ ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) )
47 22 32 feqresmpt ( 𝜑 → ( 𝑂 ↾ { 𝐴 , 𝐵 } ) = ( 𝑘 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑂𝑘 ) ) )
48 47 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) = ( Σ^ ‘ ( 𝑘 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑂𝑘 ) ) ) )
49 fveq2 ( 𝑘 = 𝐴 → ( 𝑂𝑘 ) = ( 𝑂𝐴 ) )
50 fveq2 ( 𝑘 = 𝐵 → ( 𝑂𝑘 ) = ( 𝑂𝐵 ) )
51 7 9 35 37 49 50 sge0prle ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑂𝑘 ) ) ) ≤ ( ( 𝑂𝐴 ) +𝑒 ( 𝑂𝐵 ) ) )
52 48 51 eqbrtrd ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) ≤ ( ( 𝑂𝐴 ) +𝑒 ( 𝑂𝐵 ) ) )
53 18 34 39 46 52 xrletrd ( 𝜑 → ( 𝑂 { 𝐴 , 𝐵 } ) ≤ ( ( 𝑂𝐴 ) +𝑒 ( 𝑂𝐵 ) ) )
54 13 53 eqbrtrd ( 𝜑 → ( 𝑂 ‘ ( 𝐴𝐵 ) ) ≤ ( ( 𝑂𝐴 ) +𝑒 ( 𝑂𝐵 ) ) )