Step |
Hyp |
Ref |
Expression |
1 |
|
omeunle.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
omeunle.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
omeunle.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
4 |
|
omeunle.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑋 ) |
5 |
1 2
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
6 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝐴 ∈ V ) |
7 |
3 5 6
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
8 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝐵 ∈ V ) |
9 |
4 5 8
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
10 |
|
uniprg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = ∪ { 𝐴 , 𝐵 } ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑂 ‘ ∪ { 𝐴 , 𝐵 } ) ) |
14 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
15 |
3 4
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
16 |
11 15
|
eqsstrd |
⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } ⊆ 𝑋 ) |
17 |
1 2 16
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ { 𝐴 , 𝐵 } ) ∈ ( 0 [,] +∞ ) ) |
18 |
14 17
|
sselid |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ { 𝐴 , 𝐵 } ) ∈ ℝ* ) |
19 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
20 |
19
|
elexi |
⊢ { 𝐴 , 𝐵 } ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ V ) |
22 |
1 2
|
omef |
⊢ ( 𝜑 → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
23 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
24 |
7 23
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
25 |
3 24
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝑋 ) |
26 |
|
elpwg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) |
27 |
9 26
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) |
28 |
4 27
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝑋 ) |
29 |
25 28
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋 ) ) |
30 |
|
prssg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝒫 𝑋 ) ) |
31 |
7 9 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝒫 𝑋 ) ) |
32 |
29 31
|
mpbid |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝒫 𝑋 ) |
33 |
22 32
|
fssresd |
⊢ ( 𝜑 → ( 𝑂 ↾ { 𝐴 , 𝐵 } ) : { 𝐴 , 𝐵 } ⟶ ( 0 [,] +∞ ) ) |
34 |
21 33
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) ∈ ℝ* ) |
35 |
1 2 3
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
36 |
14 35
|
sselid |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ* ) |
37 |
1 2 4
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
38 |
14 37
|
sselid |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ℝ* ) |
39 |
36 38
|
xaddcld |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) +𝑒 ( 𝑂 ‘ 𝐵 ) ) ∈ ℝ* ) |
40 |
|
isfinite |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin ↔ { 𝐴 , 𝐵 } ≺ ω ) |
41 |
40
|
biimpi |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin → { 𝐴 , 𝐵 } ≺ ω ) |
42 |
|
sdomdom |
⊢ ( { 𝐴 , 𝐵 } ≺ ω → { 𝐴 , 𝐵 } ≼ ω ) |
43 |
41 42
|
syl |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin → { 𝐴 , 𝐵 } ≼ ω ) |
44 |
19 43
|
ax-mp |
⊢ { 𝐴 , 𝐵 } ≼ ω |
45 |
44
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≼ ω ) |
46 |
1 2 32 45
|
omeunile |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ { 𝐴 , 𝐵 } ) ≤ ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) ) |
47 |
22 32
|
feqresmpt |
⊢ ( 𝜑 → ( 𝑂 ↾ { 𝐴 , 𝐵 } ) = ( 𝑘 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑂 ‘ 𝑘 ) ) ) |
48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) = ( Σ^ ‘ ( 𝑘 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑂 ‘ 𝑘 ) ) ) ) |
49 |
|
fveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝑂 ‘ 𝑘 ) = ( 𝑂 ‘ 𝐴 ) ) |
50 |
|
fveq2 |
⊢ ( 𝑘 = 𝐵 → ( 𝑂 ‘ 𝑘 ) = ( 𝑂 ‘ 𝐵 ) ) |
51 |
7 9 35 37 49 50
|
sge0prle |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ { 𝐴 , 𝐵 } ↦ ( 𝑂 ‘ 𝑘 ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) +𝑒 ( 𝑂 ‘ 𝐵 ) ) ) |
52 |
48 51
|
eqbrtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ { 𝐴 , 𝐵 } ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) +𝑒 ( 𝑂 ‘ 𝐵 ) ) ) |
53 |
18 34 39 46 52
|
xrletrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ { 𝐴 , 𝐵 } ) ≤ ( ( 𝑂 ‘ 𝐴 ) +𝑒 ( 𝑂 ‘ 𝐵 ) ) ) |
54 |
13 53
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) +𝑒 ( 𝑂 ‘ 𝐵 ) ) ) |