| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omeunle.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
omeunle.x |
|- X = U. dom O |
| 3 |
|
omeunle.a |
|- ( ph -> A C_ X ) |
| 4 |
|
omeunle.b |
|- ( ph -> B C_ X ) |
| 5 |
1 2
|
unidmex |
|- ( ph -> X e. _V ) |
| 6 |
|
ssexg |
|- ( ( A C_ X /\ X e. _V ) -> A e. _V ) |
| 7 |
3 5 6
|
syl2anc |
|- ( ph -> A e. _V ) |
| 8 |
|
ssexg |
|- ( ( B C_ X /\ X e. _V ) -> B e. _V ) |
| 9 |
4 5 8
|
syl2anc |
|- ( ph -> B e. _V ) |
| 10 |
|
uniprg |
|- ( ( A e. _V /\ B e. _V ) -> U. { A , B } = ( A u. B ) ) |
| 11 |
7 9 10
|
syl2anc |
|- ( ph -> U. { A , B } = ( A u. B ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( A u. B ) = U. { A , B } ) |
| 13 |
12
|
fveq2d |
|- ( ph -> ( O ` ( A u. B ) ) = ( O ` U. { A , B } ) ) |
| 14 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 15 |
3 4
|
unssd |
|- ( ph -> ( A u. B ) C_ X ) |
| 16 |
11 15
|
eqsstrd |
|- ( ph -> U. { A , B } C_ X ) |
| 17 |
1 2 16
|
omecl |
|- ( ph -> ( O ` U. { A , B } ) e. ( 0 [,] +oo ) ) |
| 18 |
14 17
|
sselid |
|- ( ph -> ( O ` U. { A , B } ) e. RR* ) |
| 19 |
|
prfi |
|- { A , B } e. Fin |
| 20 |
19
|
elexi |
|- { A , B } e. _V |
| 21 |
20
|
a1i |
|- ( ph -> { A , B } e. _V ) |
| 22 |
1 2
|
omef |
|- ( ph -> O : ~P X --> ( 0 [,] +oo ) ) |
| 23 |
|
elpwg |
|- ( A e. _V -> ( A e. ~P X <-> A C_ X ) ) |
| 24 |
7 23
|
syl |
|- ( ph -> ( A e. ~P X <-> A C_ X ) ) |
| 25 |
3 24
|
mpbird |
|- ( ph -> A e. ~P X ) |
| 26 |
|
elpwg |
|- ( B e. _V -> ( B e. ~P X <-> B C_ X ) ) |
| 27 |
9 26
|
syl |
|- ( ph -> ( B e. ~P X <-> B C_ X ) ) |
| 28 |
4 27
|
mpbird |
|- ( ph -> B e. ~P X ) |
| 29 |
25 28
|
jca |
|- ( ph -> ( A e. ~P X /\ B e. ~P X ) ) |
| 30 |
|
prssg |
|- ( ( A e. _V /\ B e. _V ) -> ( ( A e. ~P X /\ B e. ~P X ) <-> { A , B } C_ ~P X ) ) |
| 31 |
7 9 30
|
syl2anc |
|- ( ph -> ( ( A e. ~P X /\ B e. ~P X ) <-> { A , B } C_ ~P X ) ) |
| 32 |
29 31
|
mpbid |
|- ( ph -> { A , B } C_ ~P X ) |
| 33 |
22 32
|
fssresd |
|- ( ph -> ( O |` { A , B } ) : { A , B } --> ( 0 [,] +oo ) ) |
| 34 |
21 33
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( O |` { A , B } ) ) e. RR* ) |
| 35 |
1 2 3
|
omecl |
|- ( ph -> ( O ` A ) e. ( 0 [,] +oo ) ) |
| 36 |
14 35
|
sselid |
|- ( ph -> ( O ` A ) e. RR* ) |
| 37 |
1 2 4
|
omecl |
|- ( ph -> ( O ` B ) e. ( 0 [,] +oo ) ) |
| 38 |
14 37
|
sselid |
|- ( ph -> ( O ` B ) e. RR* ) |
| 39 |
36 38
|
xaddcld |
|- ( ph -> ( ( O ` A ) +e ( O ` B ) ) e. RR* ) |
| 40 |
|
isfinite |
|- ( { A , B } e. Fin <-> { A , B } ~< _om ) |
| 41 |
40
|
biimpi |
|- ( { A , B } e. Fin -> { A , B } ~< _om ) |
| 42 |
|
sdomdom |
|- ( { A , B } ~< _om -> { A , B } ~<_ _om ) |
| 43 |
41 42
|
syl |
|- ( { A , B } e. Fin -> { A , B } ~<_ _om ) |
| 44 |
19 43
|
ax-mp |
|- { A , B } ~<_ _om |
| 45 |
44
|
a1i |
|- ( ph -> { A , B } ~<_ _om ) |
| 46 |
1 2 32 45
|
omeunile |
|- ( ph -> ( O ` U. { A , B } ) <_ ( sum^ ` ( O |` { A , B } ) ) ) |
| 47 |
22 32
|
feqresmpt |
|- ( ph -> ( O |` { A , B } ) = ( k e. { A , B } |-> ( O ` k ) ) ) |
| 48 |
47
|
fveq2d |
|- ( ph -> ( sum^ ` ( O |` { A , B } ) ) = ( sum^ ` ( k e. { A , B } |-> ( O ` k ) ) ) ) |
| 49 |
|
fveq2 |
|- ( k = A -> ( O ` k ) = ( O ` A ) ) |
| 50 |
|
fveq2 |
|- ( k = B -> ( O ` k ) = ( O ` B ) ) |
| 51 |
7 9 35 37 49 50
|
sge0prle |
|- ( ph -> ( sum^ ` ( k e. { A , B } |-> ( O ` k ) ) ) <_ ( ( O ` A ) +e ( O ` B ) ) ) |
| 52 |
48 51
|
eqbrtrd |
|- ( ph -> ( sum^ ` ( O |` { A , B } ) ) <_ ( ( O ` A ) +e ( O ` B ) ) ) |
| 53 |
18 34 39 46 52
|
xrletrd |
|- ( ph -> ( O ` U. { A , B } ) <_ ( ( O ` A ) +e ( O ` B ) ) ) |
| 54 |
13 53
|
eqbrtrd |
|- ( ph -> ( O ` ( A u. B ) ) <_ ( ( O ` A ) +e ( O ` B ) ) ) |