| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omeunle.o |
|
| 2 |
|
omeunle.x |
|
| 3 |
|
omeunle.a |
|
| 4 |
|
omeunle.b |
|
| 5 |
1 2
|
unidmex |
|
| 6 |
|
ssexg |
|
| 7 |
3 5 6
|
syl2anc |
|
| 8 |
|
ssexg |
|
| 9 |
4 5 8
|
syl2anc |
|
| 10 |
|
uniprg |
|
| 11 |
7 9 10
|
syl2anc |
|
| 12 |
11
|
eqcomd |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
iccssxr |
|
| 15 |
3 4
|
unssd |
|
| 16 |
11 15
|
eqsstrd |
|
| 17 |
1 2 16
|
omecl |
|
| 18 |
14 17
|
sselid |
|
| 19 |
|
prfi |
|
| 20 |
19
|
elexi |
|
| 21 |
20
|
a1i |
|
| 22 |
1 2
|
omef |
|
| 23 |
|
elpwg |
|
| 24 |
7 23
|
syl |
|
| 25 |
3 24
|
mpbird |
|
| 26 |
|
elpwg |
|
| 27 |
9 26
|
syl |
|
| 28 |
4 27
|
mpbird |
|
| 29 |
25 28
|
jca |
|
| 30 |
|
prssg |
|
| 31 |
7 9 30
|
syl2anc |
|
| 32 |
29 31
|
mpbid |
|
| 33 |
22 32
|
fssresd |
|
| 34 |
21 33
|
sge0xrcl |
|
| 35 |
1 2 3
|
omecl |
|
| 36 |
14 35
|
sselid |
|
| 37 |
1 2 4
|
omecl |
|
| 38 |
14 37
|
sselid |
|
| 39 |
36 38
|
xaddcld |
|
| 40 |
|
isfinite |
|
| 41 |
40
|
biimpi |
|
| 42 |
|
sdomdom |
|
| 43 |
41 42
|
syl |
|
| 44 |
19 43
|
ax-mp |
|
| 45 |
44
|
a1i |
|
| 46 |
1 2 32 45
|
omeunile |
|
| 47 |
22 32
|
feqresmpt |
|
| 48 |
47
|
fveq2d |
|
| 49 |
|
fveq2 |
|
| 50 |
|
fveq2 |
|
| 51 |
7 9 35 37 49 50
|
sge0prle |
|
| 52 |
48 51
|
eqbrtrd |
|
| 53 |
18 34 39 46 52
|
xrletrd |
|
| 54 |
13 53
|
eqbrtrd |
|