| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omeiunle.nph |
|
| 2 |
|
omeiunle.ne |
|
| 3 |
|
omeiunle.o |
|
| 4 |
|
omeiunle.x |
|
| 5 |
|
omeiunle.z |
|
| 6 |
|
omeiunle.e |
|
| 7 |
|
iccssxr |
|
| 8 |
6
|
ffvelcdmda |
|
| 9 |
|
elpwi |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
ex |
|
| 12 |
1 11
|
ralrimi |
|
| 13 |
|
iunss |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
3 4 14
|
omecl |
|
| 16 |
7 15
|
sselid |
|
| 17 |
6
|
ffnd |
|
| 18 |
5
|
fvexi |
|
| 19 |
18
|
a1i |
|
| 20 |
|
fnex |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
|
rnexg |
|
| 23 |
21 22
|
syl |
|
| 24 |
3 4
|
omef |
|
| 25 |
6
|
frnd |
|
| 26 |
24 25
|
fssresd |
|
| 27 |
23 26
|
sge0xrcl |
|
| 28 |
3
|
adantr |
|
| 29 |
28 4 10
|
omecl |
|
| 30 |
|
eqid |
|
| 31 |
1 29 30
|
fmptdf |
|
| 32 |
19 31
|
sge0xrcl |
|
| 33 |
|
fvex |
|
| 34 |
33
|
rgenw |
|
| 35 |
|
dfiun3g |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
36
|
a1i |
|
| 38 |
6
|
feqmptd |
|
| 39 |
|
nfcv |
|
| 40 |
2 39
|
nffv |
|
| 41 |
|
nfcv |
|
| 42 |
|
fveq2 |
|
| 43 |
40 41 42
|
cbvmpt |
|
| 44 |
43
|
a1i |
|
| 45 |
38 44
|
eqtrd |
|
| 46 |
45
|
rneqd |
|
| 47 |
46
|
unieqd |
|
| 48 |
37 47
|
eqtr4d |
|
| 49 |
48
|
fveq2d |
|
| 50 |
|
fnrndomg |
|
| 51 |
19 17 50
|
sylc |
|
| 52 |
5
|
uzct |
|
| 53 |
52
|
a1i |
|
| 54 |
|
domtr |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
3 4 25 55
|
omeunile |
|
| 57 |
49 56
|
eqbrtrd |
|
| 58 |
|
ltweuz |
|
| 59 |
|
weeq2 |
|
| 60 |
5 59
|
ax-mp |
|
| 61 |
58 60
|
mpbir |
|
| 62 |
61
|
a1i |
|
| 63 |
19 24 6 62
|
sge0resrn |
|
| 64 |
|
fcompt |
|
| 65 |
|
nfcv |
|
| 66 |
65 40
|
nffv |
|
| 67 |
|
nfcv |
|
| 68 |
|
2fveq3 |
|
| 69 |
66 67 68
|
cbvmpt |
|
| 70 |
69
|
a1i |
|
| 71 |
64 70
|
eqtrd |
|
| 72 |
24 6 71
|
syl2anc |
|
| 73 |
72
|
fveq2d |
|
| 74 |
63 73
|
breqtrd |
|
| 75 |
16 27 32 57 74
|
xrletrd |
|