Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ltweuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom | |
|
2 | ordwe | |
|
3 | 1 2 | ax-mp | |
4 | rdgeq2 | |
|
5 | 4 | reseq1d | |
6 | isoeq1 | |
|
7 | 5 6 | syl | |
8 | fveq2 | |
|
9 | isoeq5 | |
|
10 | 8 9 | syl | |
11 | 0z | |
|
12 | 11 | elimel | |
13 | eqid | |
|
14 | 12 13 | om2uzisoi | |
15 | 7 10 14 | dedth2v | |
16 | isocnv | |
|
17 | 15 16 | syl | |
18 | dmres | |
|
19 | omex | |
|
20 | 19 | inex1 | |
21 | 18 20 | eqeltri | |
22 | cnvimass | |
|
23 | 21 22 | ssexi | |
24 | 23 | ax-gen | |
25 | isowe2 | |
|
26 | 17 24 25 | sylancl | |
27 | 3 26 | mpi | |
28 | uzf | |
|
29 | 28 | fdmi | |
30 | 27 29 | eleq2s | |
31 | we0 | |
|
32 | ndmfv | |
|
33 | weeq2 | |
|
34 | 32 33 | syl | |
35 | 31 34 | mpbiri | |
36 | 30 35 | pm2.61i | |