Metamath Proof Explorer


Theorem ltweuz

Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion ltweuz <WeA

Proof

Step Hyp Ref Expression
1 ordom Ordω
2 ordwe OrdωEWeω
3 1 2 ax-mp EWeω
4 rdgeq2 A=ifAA0recxVx+1A=recxVx+1ifAA0
5 4 reseq1d A=ifAA0recxVx+1Aω=recxVx+1ifAA0ω
6 isoeq1 recxVx+1Aω=recxVx+1ifAA0ωrecxVx+1AωIsomE,<ωArecxVx+1ifAA0ωIsomE,<ωA
7 5 6 syl A=ifAA0recxVx+1AωIsomE,<ωArecxVx+1ifAA0ωIsomE,<ωA
8 fveq2 A=ifAA0A=ifAA0
9 isoeq5 A=ifAA0recxVx+1ifAA0ωIsomE,<ωArecxVx+1ifAA0ωIsomE,<ωifAA0
10 8 9 syl A=ifAA0recxVx+1ifAA0ωIsomE,<ωArecxVx+1ifAA0ωIsomE,<ωifAA0
11 0z 0
12 11 elimel ifAA0
13 eqid recxVx+1ifAA0ω=recxVx+1ifAA0ω
14 12 13 om2uzisoi recxVx+1ifAA0ωIsomE,<ωifAA0
15 7 10 14 dedth2v ArecxVx+1AωIsomE,<ωA
16 isocnv recxVx+1AωIsomE,<ωArecxVx+1Aω-1Isom<,EAω
17 15 16 syl ArecxVx+1Aω-1Isom<,EAω
18 dmres domrecxVx+1Aω=ωdomrecxVx+1A
19 omex ωV
20 19 inex1 ωdomrecxVx+1AV
21 18 20 eqeltri domrecxVx+1AωV
22 cnvimass recxVx+1Aω-1ydomrecxVx+1Aω
23 21 22 ssexi recxVx+1Aω-1yV
24 23 ax-gen yrecxVx+1Aω-1yV
25 isowe2 recxVx+1Aω-1Isom<,EAωyrecxVx+1Aω-1yVEWeω<WeA
26 17 24 25 sylancl AEWeω<WeA
27 3 26 mpi A<WeA
28 uzf :𝒫
29 28 fdmi dom=
30 27 29 eleq2s Adom<WeA
31 we0 <We
32 ndmfv ¬AdomA=
33 weeq2 A=<WeA<We
34 32 33 syl ¬Adom<WeA<We
35 31 34 mpbiri ¬Adom<WeA
36 30 35 pm2.61i <WeA