| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omelesplit.1 |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
omelesplit.2 |
|- X = U. dom O |
| 3 |
|
omelesplit.3 |
|- ( ph -> A C_ X ) |
| 4 |
|
inundif |
|- ( ( A i^i E ) u. ( A \ E ) ) = A |
| 5 |
4
|
eqcomi |
|- A = ( ( A i^i E ) u. ( A \ E ) ) |
| 6 |
5
|
a1i |
|- ( ph -> A = ( ( A i^i E ) u. ( A \ E ) ) ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( O ` A ) = ( O ` ( ( A i^i E ) u. ( A \ E ) ) ) ) |
| 8 |
|
ssinss1 |
|- ( A C_ X -> ( A i^i E ) C_ X ) |
| 9 |
3 8
|
syl |
|- ( ph -> ( A i^i E ) C_ X ) |
| 10 |
3
|
ssdifssd |
|- ( ph -> ( A \ E ) C_ X ) |
| 11 |
1 2 9 10
|
omeunle |
|- ( ph -> ( O ` ( ( A i^i E ) u. ( A \ E ) ) ) <_ ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) ) |
| 12 |
7 11
|
eqbrtrd |
|- ( ph -> ( O ` A ) <_ ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) ) |