Metamath Proof Explorer


Theorem omelesplit

Description: The outer measure of a set A is less than or equal to the extended addition of the outer measures of the decomposition induced on A by any E . Step (a) in the proof of Caratheodory's Method, Theorem 113C of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omelesplit.1
|- ( ph -> O e. OutMeas )
omelesplit.2
|- X = U. dom O
omelesplit.3
|- ( ph -> A C_ X )
Assertion omelesplit
|- ( ph -> ( O ` A ) <_ ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) )

Proof

Step Hyp Ref Expression
1 omelesplit.1
 |-  ( ph -> O e. OutMeas )
2 omelesplit.2
 |-  X = U. dom O
3 omelesplit.3
 |-  ( ph -> A C_ X )
4 inundif
 |-  ( ( A i^i E ) u. ( A \ E ) ) = A
5 4 eqcomi
 |-  A = ( ( A i^i E ) u. ( A \ E ) )
6 5 a1i
 |-  ( ph -> A = ( ( A i^i E ) u. ( A \ E ) ) )
7 6 fveq2d
 |-  ( ph -> ( O ` A ) = ( O ` ( ( A i^i E ) u. ( A \ E ) ) ) )
8 ssinss1
 |-  ( A C_ X -> ( A i^i E ) C_ X )
9 3 8 syl
 |-  ( ph -> ( A i^i E ) C_ X )
10 3 ssdifssd
 |-  ( ph -> ( A \ E ) C_ X )
11 1 2 9 10 omeunle
 |-  ( ph -> ( O ` ( ( A i^i E ) u. ( A \ E ) ) ) <_ ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) )
12 7 11 eqbrtrd
 |-  ( ph -> ( O ` A ) <_ ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) )