| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omeiunltfirp.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
omeiunltfirp.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 3 |
|
omeiunltfirp.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 4 |
|
omeiunltfirp.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝒫 𝑋 ) |
| 5 |
|
omeiunltfirp.re |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
| 6 |
|
omeiunltfirp.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
| 7 |
3
|
fvexi |
⊢ 𝑍 ∈ V |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → 𝑍 ∈ V ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑂 ∈ OutMeas ) |
| 10 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 11 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
| 12 |
11
|
elpw |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 𝑋 ↔ ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 13 |
10 12
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 14 |
9 2 13
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
| 15 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 16 |
14 15
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : 𝑍 ⟶ ( 0 [,] +∞ ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : 𝑍 ⟶ ( 0 [,] +∞ ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
| 20 |
8 17 18 19
|
sge0pnffigt |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) |
| 21 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) → ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) |
| 23 |
|
elpwinss |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑧 ⊆ 𝑍 ) |
| 24 |
23
|
resmptd |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) = ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) → ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 27 |
22 26
|
breqtrd |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 28 |
27
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 29 |
5
|
rexrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) |
| 32 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝑂 ∈ OutMeas ) |
| 33 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝐸 : 𝑍 ⟶ 𝒫 𝑋 ) |
| 34 |
23
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑧 ⊆ 𝑍 ) |
| 35 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑧 ) |
| 36 |
34 35
|
sseldd |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑍 ) |
| 37 |
36
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑍 ) |
| 38 |
33 37
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 39 |
38 12
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 40 |
32 2 39
|
omecl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
| 41 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 42 |
40 41
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : 𝑧 ⟶ ( 0 [,] +∞ ) ) |
| 43 |
31 42
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
| 45 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑧 ∈ Fin ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 47 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 48 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 49 |
48
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 0 ∈ ℝ* ) |
| 50 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 51 |
50
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → +∞ ∈ ℝ* ) |
| 52 |
32 2 39
|
omexrcl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 53 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 54 |
49 51 40 53
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 0 ≤ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 55 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 56 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ↔ ∀ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 57 |
55 56
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 59 |
32 2 58
|
omexrcl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 60 |
|
ssiun2 |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 61 |
37 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 62 |
32 2 58 61
|
omessle |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
| 63 |
5
|
ltpnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
| 65 |
52 59 51 62 64
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
| 66 |
49 51 52 54 65
|
elicod |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) |
| 67 |
47 66
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
| 68 |
46 67
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
| 69 |
6
|
rpred |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑌 ∈ ℝ ) |
| 71 |
68 70
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ∈ ℝ ) |
| 72 |
71
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ∈ ℝ* ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ∈ ℝ* ) |
| 74 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 75 |
66 41
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : 𝑧 ⟶ ( 0 [,) +∞ ) ) |
| 76 |
46 75
|
sge0fsum |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = Σ 𝑘 ∈ 𝑧 ( ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 77 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 78 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
| 79 |
78
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) ∧ 𝑛 = 𝑘 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
| 80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝑧 ) |
| 81 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) ∈ V ) |
| 82 |
77 79 80 81
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → ( ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
| 83 |
82
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑧 ( ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
| 84 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑛 → ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) = ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 85 |
84
|
cbvsumv |
⊢ Σ 𝑘 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) |
| 86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑘 ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 87 |
76 83 86
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 88 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑌 ∈ ℝ+ ) |
| 89 |
68 88
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 90 |
87 89
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 92 |
30 44 73 74 91
|
xrlttrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 93 |
21 28 92
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) ) |
| 95 |
94
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) ) |
| 96 |
95
|
reximdva |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ^ ‘ ( ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ↾ 𝑧 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) ) |
| 97 |
20 96
|
mpd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 98 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → 𝜑 ) |
| 99 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) |
| 100 |
7
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 101 |
100 16
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ( ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ↔ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) ) |
| 103 |
99 102
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 104 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 105 |
|
nfcv |
⊢ Ⅎ 𝑛 Σ^ |
| 106 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 107 |
105 106
|
nffv |
⊢ Ⅎ 𝑛 ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
| 109 |
107 108
|
nfel |
⊢ Ⅎ 𝑛 ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ |
| 110 |
104 109
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 111 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) → 𝑍 ∈ V ) |
| 112 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
| 113 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) → 𝑌 ∈ ℝ+ ) |
| 114 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 115 |
110 111 112 113 114
|
sge0ltfirpmpt |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) |
| 116 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
| 117 |
114
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 118 |
71
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ∈ ℝ ) |
| 119 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐸 |
| 120 |
104 119 1 2 3 4
|
omeiunle |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 121 |
120
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 122 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) |
| 123 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝜑 ) |
| 124 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
| 125 |
124
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
| 126 |
125
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) |
| 127 |
126
|
eleq1i |
⊢ ( ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ↔ ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) ∈ ℝ ) |
| 128 |
127
|
biimpi |
⊢ ( ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ → ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) ∈ ℝ ) |
| 129 |
128
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) ∈ ℝ ) |
| 130 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) |
| 131 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 132 |
66
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) |
| 133 |
131 132
|
sge0fsummpt |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑚 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 134 |
123 129 130 133
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 135 |
134
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) = ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) = ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 137 |
122 136
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 138 |
116 117 118 121 137
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 139 |
138
|
ex |
⊢ ( ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) ) |
| 140 |
139
|
reximdva |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) < ( ( Σ^ ‘ ( 𝑛 ∈ 𝑧 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) + 𝑌 ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) ) |
| 141 |
115 140
|
mpd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 142 |
98 103 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = +∞ ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |
| 143 |
97 142
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) + 𝑌 ) ) |