| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omeiunlempt.nph |
⊢ Ⅎ 𝑛 𝜑 |
| 2 |
|
omeiunlempt.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 3 |
|
omeiunlempt.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 4 |
|
omeiunlempt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 5 |
|
omeiunlempt.e |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐸 ⊆ 𝑋 ) |
| 6 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) |
| 7 |
2 3
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑋 ∈ V ) |
| 9 |
|
ssexg |
⊢ ( ( 𝐸 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝐸 ∈ V ) |
| 10 |
5 8 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐸 ∈ V ) |
| 11 |
|
elpwg |
⊢ ( 𝐸 ∈ V → ( 𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋 ) ) |
| 13 |
5 12
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐸 ∈ 𝒫 𝑋 ) |
| 14 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) |
| 15 |
1 13 14
|
fmptdf |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) : 𝑍 ⟶ 𝒫 𝑋 ) |
| 16 |
1 6 2 3 4 15
|
omeiunle |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 18 |
14
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐸 ∈ V ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) = 𝐸 ) |
| 19 |
17 10 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) = 𝐸 ) |
| 20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐸 = ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) |
| 21 |
1 20
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 𝐸 = ∪ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 𝐸 ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ) |
| 23 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑂 ‘ 𝐸 ) = ( 𝑂 ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ) |
| 24 |
1 23
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ 𝐸 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ 𝐸 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ) ) ) |
| 26 |
22 25
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 𝐸 ) ≤ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ 𝐸 ) ) ) ↔ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐸 ) ‘ 𝑛 ) ) ) ) ) ) |
| 27 |
16 26
|
mpbird |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 𝐸 ) ≤ ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑂 ‘ 𝐸 ) ) ) ) |