| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omeiunlempt.nph | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | omeiunlempt.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 3 |  | omeiunlempt.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 4 |  | omeiunlempt.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 5 |  | omeiunlempt.e | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐸  ⊆  𝑋 ) | 
						
							| 6 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  𝑍  ↦  𝐸 ) | 
						
							| 7 | 2 3 | unidmex | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑋  ∈  V ) | 
						
							| 9 |  | ssexg | ⊢ ( ( 𝐸  ⊆  𝑋  ∧  𝑋  ∈  V )  →  𝐸  ∈  V ) | 
						
							| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐸  ∈  V ) | 
						
							| 11 |  | elpwg | ⊢ ( 𝐸  ∈  V  →  ( 𝐸  ∈  𝒫  𝑋  ↔  𝐸  ⊆  𝑋 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸  ∈  𝒫  𝑋  ↔  𝐸  ⊆  𝑋 ) ) | 
						
							| 13 | 5 12 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐸  ∈  𝒫  𝑋 ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  𝐸 )  =  ( 𝑛  ∈  𝑍  ↦  𝐸 ) | 
						
							| 15 | 1 13 14 | fmptdf | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  𝐸 ) : 𝑍 ⟶ 𝒫  𝑋 ) | 
						
							| 16 | 1 6 2 3 4 15 | omeiunle | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) )  ≤  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 18 | 14 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝐸  ∈  V )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 )  =  𝐸 ) | 
						
							| 19 | 17 10 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 )  =  𝐸 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐸  =  ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) | 
						
							| 21 | 1 20 | iuneq2df | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 𝐸  =  ∪  𝑛  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 𝐸 )  =  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) ) | 
						
							| 23 | 20 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑂 ‘ 𝐸 )  =  ( 𝑂 ‘ ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) ) | 
						
							| 24 | 1 23 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ 𝐸 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ 𝐸 ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 26 | 22 25 | breq12d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 𝐸 )  ≤  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ 𝐸 ) ) )  ↔  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) )  ≤  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ ( ( 𝑛  ∈  𝑍  ↦  𝐸 ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 27 | 16 26 | mpbird | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  𝑛  ∈  𝑍 𝐸 )  ≤  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑂 ‘ 𝐸 ) ) ) ) |