Metamath Proof Explorer


Theorem omeiunlempt

Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeiunlempt.nph 𝑛 𝜑
omeiunlempt.o ( 𝜑𝑂 ∈ OutMeas )
omeiunlempt.x 𝑋 = dom 𝑂
omeiunlempt.z 𝑍 = ( ℤ𝑁 )
omeiunlempt.e ( ( 𝜑𝑛𝑍 ) → 𝐸𝑋 )
Assertion omeiunlempt ( 𝜑 → ( 𝑂 𝑛𝑍 𝐸 ) ≤ ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂𝐸 ) ) ) )

Proof

Step Hyp Ref Expression
1 omeiunlempt.nph 𝑛 𝜑
2 omeiunlempt.o ( 𝜑𝑂 ∈ OutMeas )
3 omeiunlempt.x 𝑋 = dom 𝑂
4 omeiunlempt.z 𝑍 = ( ℤ𝑁 )
5 omeiunlempt.e ( ( 𝜑𝑛𝑍 ) → 𝐸𝑋 )
6 nfmpt1 𝑛 ( 𝑛𝑍𝐸 )
7 2 3 unidmex ( 𝜑𝑋 ∈ V )
8 7 adantr ( ( 𝜑𝑛𝑍 ) → 𝑋 ∈ V )
9 ssexg ( ( 𝐸𝑋𝑋 ∈ V ) → 𝐸 ∈ V )
10 5 8 9 syl2anc ( ( 𝜑𝑛𝑍 ) → 𝐸 ∈ V )
11 elpwg ( 𝐸 ∈ V → ( 𝐸 ∈ 𝒫 𝑋𝐸𝑋 ) )
12 10 11 syl ( ( 𝜑𝑛𝑍 ) → ( 𝐸 ∈ 𝒫 𝑋𝐸𝑋 ) )
13 5 12 mpbird ( ( 𝜑𝑛𝑍 ) → 𝐸 ∈ 𝒫 𝑋 )
14 eqid ( 𝑛𝑍𝐸 ) = ( 𝑛𝑍𝐸 )
15 1 13 14 fmptdf ( 𝜑 → ( 𝑛𝑍𝐸 ) : 𝑍 ⟶ 𝒫 𝑋 )
16 1 6 2 3 4 15 omeiunle ( 𝜑 → ( 𝑂 𝑛𝑍 ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) ) ) )
17 simpr ( ( 𝜑𝑛𝑍 ) → 𝑛𝑍 )
18 14 fvmpt2 ( ( 𝑛𝑍𝐸 ∈ V ) → ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) = 𝐸 )
19 17 10 18 syl2anc ( ( 𝜑𝑛𝑍 ) → ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) = 𝐸 )
20 19 eqcomd ( ( 𝜑𝑛𝑍 ) → 𝐸 = ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) )
21 1 20 iuneq2df ( 𝜑 𝑛𝑍 𝐸 = 𝑛𝑍 ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) )
22 21 fveq2d ( 𝜑 → ( 𝑂 𝑛𝑍 𝐸 ) = ( 𝑂 𝑛𝑍 ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) )
23 20 fveq2d ( ( 𝜑𝑛𝑍 ) → ( 𝑂𝐸 ) = ( 𝑂 ‘ ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) )
24 1 23 mpteq2da ( 𝜑 → ( 𝑛𝑍 ↦ ( 𝑂𝐸 ) ) = ( 𝑛𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) ) )
25 24 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂𝐸 ) ) ) = ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) ) ) )
26 22 25 breq12d ( 𝜑 → ( ( 𝑂 𝑛𝑍 𝐸 ) ≤ ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂𝐸 ) ) ) ↔ ( 𝑂 𝑛𝑍 ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂 ‘ ( ( 𝑛𝑍𝐸 ) ‘ 𝑛 ) ) ) ) ) )
27 16 26 mpbird ( 𝜑 → ( 𝑂 𝑛𝑍 𝐸 ) ≤ ( Σ^ ‘ ( 𝑛𝑍 ↦ ( 𝑂𝐸 ) ) ) )