| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carageniuncllem1.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
carageniuncllem1.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 3 |
|
carageniuncllem1.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 4 |
|
carageniuncllem1.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 5 |
|
carageniuncllem1.re |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
|
carageniuncllem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 7 |
|
carageniuncllem1.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 8 |
|
carageniuncllem1.g |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
| 9 |
|
carageniuncllem1.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 10 |
|
carageniuncllem1.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
| 11 |
10 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 12 |
|
eluzfz2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ( 𝑀 ... 𝐾 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝐾 ) ) |
| 14 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 15 |
|
oveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑀 ) ) |
| 16 |
15
|
sumeq1d |
⊢ ( 𝑘 = 𝑀 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 18 |
17
|
ineq2d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑘 = 𝑀 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) |
| 20 |
16 19
|
eqeq12d |
⊢ ( 𝑘 = 𝑀 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑗 ) ) |
| 23 |
22
|
sumeq1d |
⊢ ( 𝑘 = 𝑗 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) |
| 25 |
24
|
ineq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 27 |
23 26
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... ( 𝑗 + 1 ) ) ) |
| 30 |
29
|
sumeq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 32 |
31
|
ineq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 34 |
30 33
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝐾 ) ) |
| 37 |
36
|
sumeq1d |
⊢ ( 𝑘 = 𝐾 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝐾 ) ) |
| 39 |
38
|
ineq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 41 |
37 40
|
eqeq12d |
⊢ ( 𝑘 = 𝐾 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 42 |
41
|
imbi2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) ) ) |
| 43 |
|
eluzel2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 44 |
11 43
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 45 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 47 |
46
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 48 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ⊆ 𝐴 |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ⊆ 𝐴 ) |
| 50 |
1 3 4 5 49
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℂ ) |
| 52 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 53 |
52
|
ineq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) |
| 54 |
53
|
fveq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 55 |
54
|
sumsn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℂ ) → Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 56 |
44 51 55
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 57 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑀 ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ..^ 𝑛 ) = ( 𝑀 ..^ 𝑀 ) ) |
| 60 |
59
|
iuneq1d |
⊢ ( 𝑛 = 𝑀 → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
| 61 |
58 60
|
difeq12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 62 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 63 |
44 62
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 64 |
6
|
a1i |
⊢ ( 𝜑 → 𝑍 = ( ℤ≥ ‘ 𝑀 ) ) |
| 65 |
64
|
eqcomd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) = 𝑍 ) |
| 66 |
63 65
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 67 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑀 ) ∈ V |
| 68 |
|
difexg |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∈ V → ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
| 69 |
67 68
|
ax-mp |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
| 71 |
9 61 66 70
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 72 |
|
fzo0 |
⊢ ( 𝑀 ..^ 𝑀 ) = ∅ |
| 73 |
|
iuneq1 |
⊢ ( ( 𝑀 ..^ 𝑀 ) = ∅ → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ∅ ( 𝐸 ‘ 𝑖 ) ) |
| 74 |
72 73
|
ax-mp |
⊢ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ∅ ( 𝐸 ‘ 𝑖 ) |
| 75 |
|
0iun |
⊢ ∪ 𝑖 ∈ ∅ ( 𝐸 ‘ 𝑖 ) = ∅ |
| 76 |
74 75
|
eqtri |
⊢ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∅ |
| 77 |
76
|
difeq2i |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) ) |
| 79 |
|
dif0 |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) = ( 𝐸 ‘ 𝑀 ) |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) = ( 𝐸 ‘ 𝑀 ) ) |
| 81 |
71 78 80
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐸 ‘ 𝑀 ) ) |
| 82 |
81
|
ineq2d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) = ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) |
| 83 |
82
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) ) |
| 84 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) |
| 85 |
84
|
iuneq1d |
⊢ ( 𝑛 = 𝑀 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
| 86 |
|
ovex |
⊢ ( 𝑀 ... 𝑀 ) ∈ V |
| 87 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
| 88 |
86 87
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
| 89 |
88
|
a1i |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
| 90 |
8 85 66 89
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
| 91 |
46
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) ) |
| 92 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
| 93 |
92
|
iunxsng |
⊢ ( 𝑀 ∈ ℤ → ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
| 94 |
44 93
|
syl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
| 95 |
90 91 94
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 𝐸 ‘ 𝑀 ) ) |
| 96 |
95
|
ineq2d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) = ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) |
| 97 |
96
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) ) |
| 98 |
57 83 97
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) |
| 99 |
47 56 98
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) |
| 100 |
99
|
a1i |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) ) |
| 101 |
|
simp3 |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → 𝜑 ) |
| 102 |
|
simp1 |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) |
| 103 |
|
id |
⊢ ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 104 |
103
|
imp |
⊢ ( ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 105 |
104
|
3adant1 |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 106 |
|
elfzouz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 108 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → 𝑂 ∈ OutMeas ) |
| 109 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → 𝐴 ⊆ 𝑋 ) |
| 110 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 111 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 |
| 112 |
111
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
| 113 |
108 3 109 110 112
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 114 |
113
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 115 |
114
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 116 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 117 |
116
|
ineq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 118 |
117
|
fveq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 119 |
107 115 118
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 120 |
119
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 121 |
|
oveq1 |
⊢ ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 122 |
121
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 123 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... ( 𝑗 + 1 ) ) |
| 124 |
|
iunss1 |
⊢ ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... ( 𝑗 + 1 ) ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
| 125 |
123 124
|
ax-mp |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) |
| 126 |
125
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
| 127 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑗 ) ) |
| 128 |
127
|
iuneq1d |
⊢ ( 𝑛 = 𝑗 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
| 129 |
106 6
|
eleqtrrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ 𝑍 ) |
| 130 |
|
ovex |
⊢ ( 𝑀 ... 𝑗 ) ∈ V |
| 131 |
130 87
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
| 132 |
131
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
| 133 |
8 128 129 132
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ 𝑗 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
| 134 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑗 + 1 ) ) ) |
| 135 |
134
|
iuneq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
| 136 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 137 |
106 136
|
syl |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 138 |
6
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 139 |
137 138
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 140 |
|
ovex |
⊢ ( 𝑀 ... ( 𝑗 + 1 ) ) ∈ V |
| 141 |
140 87
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ∈ V |
| 142 |
141
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
| 143 |
8 135 139 142
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
| 144 |
133 143
|
sseq12d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ 𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ↔ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 145 |
126 144
|
mpbird |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ 𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 146 |
|
inabs3 |
⊢ ( ( 𝐺 ‘ 𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) |
| 147 |
145 146
|
syl |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) |
| 148 |
147
|
fveq2d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 149 |
148
|
eqcomd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 151 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ℤ ) |
| 152 |
|
fzval3 |
⊢ ( 𝑗 ∈ ℤ → ( 𝑀 ... 𝑗 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) ) |
| 153 |
151 152
|
syl |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑀 ... 𝑗 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) ) |
| 154 |
153
|
eqcomd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑀 ..^ ( 𝑗 + 1 ) ) = ( 𝑀 ... 𝑗 ) ) |
| 155 |
154
|
iuneq1d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
| 156 |
155
|
difeq2d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 157 |
156
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 158 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) |
| 159 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑀 ..^ 𝑛 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) ) |
| 160 |
159
|
iuneq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
| 161 |
158 160
|
difeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 162 |
|
fvex |
⊢ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∈ V |
| 163 |
|
difexg |
⊢ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∈ V → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
| 164 |
162 163
|
ax-mp |
⊢ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ∈ V |
| 165 |
164
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
| 166 |
9 161 139 165
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 167 |
166
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 168 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝐸 ‘ ( 𝑗 + 1 ) ) |
| 169 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) |
| 170 |
168 106 169
|
iunp1 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) = ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ) |
| 171 |
143 170
|
eqtrd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ) |
| 172 |
171 133
|
difeq12d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 173 |
|
difundir |
⊢ ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 174 |
|
difid |
⊢ ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ∅ |
| 175 |
174
|
uneq1i |
⊢ ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) = ( ∅ ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 176 |
|
0un |
⊢ ( ∅ ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
| 177 |
173 175 176
|
3eqtri |
⊢ ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
| 178 |
177
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 179 |
172 178
|
eqtrd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 180 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 181 |
157 167 180
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) |
| 182 |
181
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 183 |
|
indif2 |
⊢ ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) |
| 184 |
183
|
eqcomi |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) |
| 185 |
184
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 186 |
182 185
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) |
| 187 |
186
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 188 |
150 187
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 189 |
|
inss1 |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ⊆ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 190 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝐴 |
| 191 |
189 190
|
sstri |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 |
| 192 |
191
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 ) |
| 193 |
1 3 4 5 192
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 195 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑂 ∈ OutMeas ) |
| 196 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝐴 ⊆ 𝑋 ) |
| 197 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 198 |
|
difss |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ⊆ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 199 |
198 190
|
sstri |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 |
| 200 |
199
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 ) |
| 201 |
195 3 196 197 200
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 202 |
|
rexadd |
⊢ ( ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 203 |
194 201 202
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 204 |
203
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 205 |
133
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐺 ‘ 𝑗 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
| 206 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
| 207 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑗 ) ∈ Fin ) |
| 208 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 209 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 210 |
138
|
a1i |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → ( ℤ≥ ‘ 𝑀 ) = 𝑍 ) |
| 211 |
209 210
|
eleqtrd |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → 𝑖 ∈ 𝑍 ) |
| 212 |
211
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑖 ∈ 𝑍 ) |
| 213 |
208 212
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
| 214 |
206 1 2 207 213
|
caragenfiiuncl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
| 215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
| 216 |
205 215
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ 𝑆 ) |
| 217 |
4
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝑋 ) |
| 218 |
217
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝑋 ) |
| 219 |
195 2 3 216 218
|
caragensplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 220 |
188 204 219
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 221 |
220
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 222 |
120 122 221
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 223 |
101 102 105 222
|
syl3anc |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 224 |
223
|
3exp |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 225 |
21 28 35 42 100 224
|
fzind2 |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝐾 ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
| 226 |
13 14 225
|
sylc |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) |