Step |
Hyp |
Ref |
Expression |
1 |
|
carageniuncllem1.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
carageniuncllem1.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
carageniuncllem1.x |
⊢ 𝑋 = ∪ dom 𝑂 |
4 |
|
carageniuncllem1.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
5 |
|
carageniuncllem1.re |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
6 |
|
carageniuncllem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
7 |
|
carageniuncllem1.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑆 ) |
8 |
|
carageniuncllem1.g |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
9 |
|
carageniuncllem1.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
10 |
|
carageniuncllem1.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
11 |
10 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
|
eluzfz2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ( 𝑀 ... 𝐾 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝐾 ) ) |
14 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
15 |
|
oveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑀 ) ) |
16 |
15
|
sumeq1d |
⊢ ( 𝑘 = 𝑀 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) |
18 |
17
|
ineq2d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑘 = 𝑀 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑘 = 𝑀 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑗 ) ) |
23 |
22
|
sumeq1d |
⊢ ( 𝑘 = 𝑗 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) |
25 |
24
|
ineq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
27 |
23 26
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... ( 𝑗 + 1 ) ) ) |
30 |
29
|
sumeq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
32 |
31
|
ineq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
34 |
30 33
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝐾 ) ) |
37 |
36
|
sumeq1d |
⊢ ( 𝑘 = 𝐾 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝐾 ) ) |
39 |
38
|
ineq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) |
40 |
39
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) |
41 |
37 40
|
eqeq12d |
⊢ ( 𝑘 = 𝐾 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) ) ) |
43 |
|
eluzel2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
44 |
11 43
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
45 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
47 |
46
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
48 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ⊆ 𝐴 |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ⊆ 𝐴 ) |
50 |
1 3 4 5 49
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℝ ) |
51 |
50
|
recnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℂ ) |
52 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑀 ) ) |
53 |
52
|
ineq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ) |
55 |
54
|
sumsn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ∈ ℂ ) → Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ) |
56 |
44 51 55
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) ) |
57 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑀 ) ) |
59 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ..^ 𝑛 ) = ( 𝑀 ..^ 𝑀 ) ) |
60 |
59
|
iuneq1d |
⊢ ( 𝑛 = 𝑀 → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
61 |
58 60
|
difeq12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ) |
62 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
63 |
44 62
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
64 |
6
|
a1i |
⊢ ( 𝜑 → 𝑍 = ( ℤ≥ ‘ 𝑀 ) ) |
65 |
64
|
eqcomd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) = 𝑍 ) |
66 |
63 65
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
67 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑀 ) ∈ V |
68 |
|
difexg |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∈ V → ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
69 |
67 68
|
ax-mp |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V |
70 |
69
|
a1i |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
71 |
9 61 66 70
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) ) |
72 |
|
fzo0 |
⊢ ( 𝑀 ..^ 𝑀 ) = ∅ |
73 |
|
iuneq1 |
⊢ ( ( 𝑀 ..^ 𝑀 ) = ∅ → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ∅ ( 𝐸 ‘ 𝑖 ) ) |
74 |
72 73
|
ax-mp |
⊢ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ∅ ( 𝐸 ‘ 𝑖 ) |
75 |
|
0iun |
⊢ ∪ 𝑖 ∈ ∅ ( 𝐸 ‘ 𝑖 ) = ∅ |
76 |
74 75
|
eqtri |
⊢ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∅ |
77 |
76
|
difeq2i |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) |
78 |
77
|
a1i |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑀 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) ) |
79 |
|
dif0 |
⊢ ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) = ( 𝐸 ‘ 𝑀 ) |
80 |
79
|
a1i |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑀 ) ∖ ∅ ) = ( 𝐸 ‘ 𝑀 ) ) |
81 |
71 78 80
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐸 ‘ 𝑀 ) ) |
82 |
81
|
ineq2d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) = ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) |
83 |
82
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) ) |
84 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) |
85 |
84
|
iuneq1d |
⊢ ( 𝑛 = 𝑀 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
86 |
|
ovex |
⊢ ( 𝑀 ... 𝑀 ) ∈ V |
87 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
88 |
86 87
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
89 |
88
|
a1i |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
90 |
8 85 66 89
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
91 |
46
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) ) |
92 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
93 |
92
|
iunxsng |
⊢ ( 𝑀 ∈ ℤ → ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
94 |
44 93
|
syl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
95 |
90 91 94
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 𝐸 ‘ 𝑀 ) ) |
96 |
95
|
ineq2d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) = ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) |
97 |
96
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ‘ 𝑀 ) ) ) ) |
98 |
57 83 97
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) |
99 |
47 56 98
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) |
100 |
99
|
a1i |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑀 ) ) ) ) ) |
101 |
|
simp3 |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → 𝜑 ) |
102 |
|
simp1 |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) |
103 |
|
id |
⊢ ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
104 |
103
|
imp |
⊢ ( ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
105 |
104
|
3adant1 |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
106 |
|
elfzouz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
108 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → 𝑂 ∈ OutMeas ) |
109 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → 𝐴 ⊆ 𝑋 ) |
110 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
111 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 |
112 |
111
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
113 |
108 3 109 110 112
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
114 |
113
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
115 |
114
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
116 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
117 |
116
|
ineq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
118 |
117
|
fveq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
119 |
107 115 118
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
120 |
119
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
121 |
|
oveq1 |
⊢ ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
122 |
121
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
123 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... ( 𝑗 + 1 ) ) |
124 |
|
iunss1 |
⊢ ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... ( 𝑗 + 1 ) ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
125 |
123 124
|
ax-mp |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) |
126 |
125
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
127 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑗 ) ) |
128 |
127
|
iuneq1d |
⊢ ( 𝑛 = 𝑗 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
129 |
106 6
|
eleqtrrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ 𝑍 ) |
130 |
|
ovex |
⊢ ( 𝑀 ... 𝑗 ) ∈ V |
131 |
130 87
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
132 |
131
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
133 |
8 128 129 132
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ 𝑗 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
134 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑗 + 1 ) ) ) |
135 |
134
|
iuneq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
136 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
137 |
106 136
|
syl |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
138 |
6
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
139 |
137 138
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
140 |
|
ovex |
⊢ ( 𝑀 ... ( 𝑗 + 1 ) ) ∈ V |
141 |
140 87
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ∈ V |
142 |
141
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
143 |
8 135 139 142
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
144 |
133 143
|
sseq12d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ 𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ↔ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ⊆ ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
145 |
126 144
|
mpbird |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ 𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
146 |
|
inabs3 |
⊢ ( ( 𝐺 ‘ 𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) |
147 |
145 146
|
syl |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) |
148 |
147
|
fveq2d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
149 |
148
|
eqcomd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) |
151 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ℤ ) |
152 |
|
fzval3 |
⊢ ( 𝑗 ∈ ℤ → ( 𝑀 ... 𝑗 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) ) |
153 |
151 152
|
syl |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑀 ... 𝑗 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) ) |
154 |
153
|
eqcomd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑀 ..^ ( 𝑗 + 1 ) ) = ( 𝑀 ... 𝑗 ) ) |
155 |
154
|
iuneq1d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
156 |
155
|
difeq2d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
157 |
156
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
158 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) |
159 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑀 ..^ 𝑛 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) ) |
160 |
159
|
iuneq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) |
161 |
158 160
|
difeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
162 |
|
fvex |
⊢ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∈ V |
163 |
|
difexg |
⊢ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∈ V → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
164 |
162 163
|
ax-mp |
⊢ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ∈ V |
165 |
164
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
166 |
9 161 139 165
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
167 |
166
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) ) ) |
168 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝐸 ‘ ( 𝑗 + 1 ) ) |
169 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) |
170 |
168 106 169
|
iunp1 |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ∪ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸 ‘ 𝑖 ) = ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ) |
171 |
143 170
|
eqtrd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ) |
172 |
171 133
|
difeq12d |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
173 |
|
difundir |
⊢ ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
174 |
|
difid |
⊢ ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ∅ |
175 |
174
|
uneq1i |
⊢ ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) = ( ∅ ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
176 |
|
0un |
⊢ ( ∅ ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
177 |
173 175 176
|
3eqtri |
⊢ ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
178 |
177
|
a1i |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
179 |
172 178
|
eqtrd |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
180 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) ) |
181 |
157 167 180
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) |
182 |
181
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) |
183 |
|
indif2 |
⊢ ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) |
184 |
183
|
eqcomi |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) |
185 |
184
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) |
186 |
182 185
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) |
187 |
186
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) |
188 |
150 187
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
189 |
|
inss1 |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ⊆ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
190 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝐴 |
191 |
189 190
|
sstri |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 |
192 |
191
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 ) |
193 |
1 3 4 5 192
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
195 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑂 ∈ OutMeas ) |
196 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝐴 ⊆ 𝑋 ) |
197 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
198 |
|
difss |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ⊆ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
199 |
198 190
|
sstri |
⊢ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 |
200 |
199
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ⊆ 𝐴 ) |
201 |
195 3 196 197 200
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
202 |
|
rexadd |
⊢ ( ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
203 |
194 201 202
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
204 |
203
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
205 |
133
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐺 ‘ 𝑗 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ) |
206 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
207 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑗 ) ∈ Fin ) |
208 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
209 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
210 |
138
|
a1i |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → ( ℤ≥ ‘ 𝑀 ) = 𝑍 ) |
211 |
209 210
|
eleqtrd |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → 𝑖 ∈ 𝑍 ) |
212 |
211
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑖 ∈ 𝑍 ) |
213 |
208 212
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
214 |
206 1 2 207 213
|
caragenfiiuncl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
216 |
205 215
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ 𝑆 ) |
217 |
4
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝑋 ) |
218 |
217
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝑋 ) |
219 |
195 2 3 216 218
|
caragensplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺 ‘ 𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
220 |
188 204 219
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
221 |
220
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
222 |
120 122 221
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
223 |
101 102 105 222
|
syl3anc |
⊢ ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
224 |
223
|
3exp |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
225 |
21 28 35 42 100 224
|
fzind2 |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝐾 ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) ) |
226 |
13 14 225
|
sylc |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝐾 ) ) ) ) |