Metamath Proof Explorer


Theorem carageniuncllem1

Description: The outer measure of A i^i ( Gn ) is the sum of the outer measures of A i^i ( Fm ) . These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageniuncllem1.o ( 𝜑𝑂 ∈ OutMeas )
carageniuncllem1.s 𝑆 = ( CaraGen ‘ 𝑂 )
carageniuncllem1.x 𝑋 = dom 𝑂
carageniuncllem1.a ( 𝜑𝐴𝑋 )
carageniuncllem1.re ( 𝜑 → ( 𝑂𝐴 ) ∈ ℝ )
carageniuncllem1.z 𝑍 = ( ℤ𝑀 )
carageniuncllem1.e ( 𝜑𝐸 : 𝑍𝑆 )
carageniuncllem1.g 𝐺 = ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) )
carageniuncllem1.f 𝐹 = ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
carageniuncllem1.k ( 𝜑𝐾𝑍 )
Assertion carageniuncllem1 ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝐾 ) ) ) )

Proof

Step Hyp Ref Expression
1 carageniuncllem1.o ( 𝜑𝑂 ∈ OutMeas )
2 carageniuncllem1.s 𝑆 = ( CaraGen ‘ 𝑂 )
3 carageniuncllem1.x 𝑋 = dom 𝑂
4 carageniuncllem1.a ( 𝜑𝐴𝑋 )
5 carageniuncllem1.re ( 𝜑 → ( 𝑂𝐴 ) ∈ ℝ )
6 carageniuncllem1.z 𝑍 = ( ℤ𝑀 )
7 carageniuncllem1.e ( 𝜑𝐸 : 𝑍𝑆 )
8 carageniuncllem1.g 𝐺 = ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) )
9 carageniuncllem1.f 𝐹 = ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
10 carageniuncllem1.k ( 𝜑𝐾𝑍 )
11 10 6 eleqtrdi ( 𝜑𝐾 ∈ ( ℤ𝑀 ) )
12 eluzfz2 ( 𝐾 ∈ ( ℤ𝑀 ) → 𝐾 ∈ ( 𝑀 ... 𝐾 ) )
13 11 12 syl ( 𝜑𝐾 ∈ ( 𝑀 ... 𝐾 ) )
14 id ( 𝜑𝜑 )
15 oveq2 ( 𝑘 = 𝑀 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑀 ) )
16 15 sumeq1d ( 𝑘 = 𝑀 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) )
17 fveq2 ( 𝑘 = 𝑀 → ( 𝐺𝑘 ) = ( 𝐺𝑀 ) )
18 17 ineq2d ( 𝑘 = 𝑀 → ( 𝐴 ∩ ( 𝐺𝑘 ) ) = ( 𝐴 ∩ ( 𝐺𝑀 ) ) )
19 18 fveq2d ( 𝑘 = 𝑀 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) )
20 16 19 eqeq12d ( 𝑘 = 𝑀 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) ) )
21 20 imbi2d ( 𝑘 = 𝑀 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) ) ) )
22 oveq2 ( 𝑘 = 𝑗 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑗 ) )
23 22 sumeq1d ( 𝑘 = 𝑗 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) )
24 fveq2 ( 𝑘 = 𝑗 → ( 𝐺𝑘 ) = ( 𝐺𝑗 ) )
25 24 ineq2d ( 𝑘 = 𝑗 → ( 𝐴 ∩ ( 𝐺𝑘 ) ) = ( 𝐴 ∩ ( 𝐺𝑗 ) ) )
26 25 fveq2d ( 𝑘 = 𝑗 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) )
27 23 26 eqeq12d ( 𝑘 = 𝑗 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) )
28 27 imbi2d ( 𝑘 = 𝑗 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) ) )
29 oveq2 ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... ( 𝑗 + 1 ) ) )
30 29 sumeq1d ( 𝑘 = ( 𝑗 + 1 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) )
31 fveq2 ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐺𝑘 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) )
32 31 ineq2d ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ∩ ( 𝐺𝑘 ) ) = ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) )
33 32 fveq2d ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) )
34 30 33 eqeq12d ( 𝑘 = ( 𝑗 + 1 ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) )
35 34 imbi2d ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) )
36 oveq2 ( 𝑘 = 𝐾 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝐾 ) )
37 36 sumeq1d ( 𝑘 = 𝐾 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) )
38 fveq2 ( 𝑘 = 𝐾 → ( 𝐺𝑘 ) = ( 𝐺𝐾 ) )
39 38 ineq2d ( 𝑘 = 𝐾 → ( 𝐴 ∩ ( 𝐺𝑘 ) ) = ( 𝐴 ∩ ( 𝐺𝐾 ) ) )
40 39 fveq2d ( 𝑘 = 𝐾 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝐾 ) ) ) )
41 37 40 eqeq12d ( 𝑘 = 𝐾 → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ↔ Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝐾 ) ) ) ) )
42 41 imbi2d ( 𝑘 = 𝐾 → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑘 ) ) ) ) ↔ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝐾 ) ) ) ) ) )
43 eluzel2 ( 𝐾 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
44 11 43 syl ( 𝜑𝑀 ∈ ℤ )
45 fzsn ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
46 44 45 syl ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
47 46 sumeq1d ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) )
48 inss1 ( 𝐴 ∩ ( 𝐹𝑀 ) ) ⊆ 𝐴
49 48 a1i ( 𝜑 → ( 𝐴 ∩ ( 𝐹𝑀 ) ) ⊆ 𝐴 )
50 1 3 4 5 49 omessre ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) ∈ ℝ )
51 50 recnd ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) ∈ ℂ )
52 fveq2 ( 𝑛 = 𝑀 → ( 𝐹𝑛 ) = ( 𝐹𝑀 ) )
53 52 ineq2d ( 𝑛 = 𝑀 → ( 𝐴 ∩ ( 𝐹𝑛 ) ) = ( 𝐴 ∩ ( 𝐹𝑀 ) ) )
54 53 fveq2d ( 𝑛 = 𝑀 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) )
55 54 sumsn ( ( 𝑀 ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) ∈ ℂ ) → Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) )
56 44 51 55 syl2anc ( 𝜑 → Σ 𝑛 ∈ { 𝑀 } ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) )
57 eqidd ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸𝑀 ) ) ) )
58 fveq2 ( 𝑛 = 𝑀 → ( 𝐸𝑛 ) = ( 𝐸𝑀 ) )
59 oveq2 ( 𝑛 = 𝑀 → ( 𝑀 ..^ 𝑛 ) = ( 𝑀 ..^ 𝑀 ) )
60 59 iuneq1d ( 𝑛 = 𝑀 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) )
61 58 60 difeq12d ( 𝑛 = 𝑀 → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) ) = ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) )
62 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
63 44 62 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
64 6 a1i ( 𝜑𝑍 = ( ℤ𝑀 ) )
65 64 eqcomd ( 𝜑 → ( ℤ𝑀 ) = 𝑍 )
66 63 65 eleqtrd ( 𝜑𝑀𝑍 )
67 fvex ( 𝐸𝑀 ) ∈ V
68 difexg ( ( 𝐸𝑀 ) ∈ V → ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) ∈ V )
69 67 68 ax-mp ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) ∈ V
70 69 a1i ( 𝜑 → ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) ∈ V )
71 9 61 66 70 fvmptd3 ( 𝜑 → ( 𝐹𝑀 ) = ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) )
72 fzo0 ( 𝑀 ..^ 𝑀 ) = ∅
73 iuneq1 ( ( 𝑀 ..^ 𝑀 ) = ∅ → 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) = 𝑖 ∈ ∅ ( 𝐸𝑖 ) )
74 72 73 ax-mp 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) = 𝑖 ∈ ∅ ( 𝐸𝑖 )
75 0iun 𝑖 ∈ ∅ ( 𝐸𝑖 ) = ∅
76 74 75 eqtri 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) = ∅
77 76 difeq2i ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) = ( ( 𝐸𝑀 ) ∖ ∅ )
78 77 a1i ( 𝜑 → ( ( 𝐸𝑀 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑀 ) ( 𝐸𝑖 ) ) = ( ( 𝐸𝑀 ) ∖ ∅ ) )
79 dif0 ( ( 𝐸𝑀 ) ∖ ∅ ) = ( 𝐸𝑀 )
80 79 a1i ( 𝜑 → ( ( 𝐸𝑀 ) ∖ ∅ ) = ( 𝐸𝑀 ) )
81 71 78 80 3eqtrd ( 𝜑 → ( 𝐹𝑀 ) = ( 𝐸𝑀 ) )
82 81 ineq2d ( 𝜑 → ( 𝐴 ∩ ( 𝐹𝑀 ) ) = ( 𝐴 ∩ ( 𝐸𝑀 ) ) )
83 82 fveq2d ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸𝑀 ) ) ) )
84 oveq2 ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) )
85 84 iuneq1d ( 𝑛 = 𝑀 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
86 ovex ( 𝑀 ... 𝑀 ) ∈ V
87 fvex ( 𝐸𝑖 ) ∈ V
88 86 87 iunex 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) ∈ V
89 88 a1i ( 𝜑 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) ∈ V )
90 8 85 66 89 fvmptd3 ( 𝜑 → ( 𝐺𝑀 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
91 46 iuneq1d ( 𝜑 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) = 𝑖 ∈ { 𝑀 } ( 𝐸𝑖 ) )
92 fveq2 ( 𝑖 = 𝑀 → ( 𝐸𝑖 ) = ( 𝐸𝑀 ) )
93 92 iunxsng ( 𝑀 ∈ ℤ → 𝑖 ∈ { 𝑀 } ( 𝐸𝑖 ) = ( 𝐸𝑀 ) )
94 44 93 syl ( 𝜑 𝑖 ∈ { 𝑀 } ( 𝐸𝑖 ) = ( 𝐸𝑀 ) )
95 90 91 94 3eqtrd ( 𝜑 → ( 𝐺𝑀 ) = ( 𝐸𝑀 ) )
96 95 ineq2d ( 𝜑 → ( 𝐴 ∩ ( 𝐺𝑀 ) ) = ( 𝐴 ∩ ( 𝐸𝑀 ) ) )
97 96 fveq2d ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸𝑀 ) ) ) )
98 57 83 97 3eqtr4d ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑀 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) )
99 47 56 98 3eqtrd ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) )
100 99 a1i ( 𝐾 ∈ ( ℤ𝑀 ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑀 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑀 ) ) ) ) )
101 simp3 ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) ∧ 𝜑 ) → 𝜑 )
102 simp1 ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) ∧ 𝜑 ) → 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) )
103 id ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) )
104 103 imp ( ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) )
105 104 3adant1 ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) )
106 elfzouz ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ( ℤ𝑀 ) )
107 106 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑗 ∈ ( ℤ𝑀 ) )
108 1 adantr ( ( 𝜑𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → 𝑂 ∈ OutMeas )
109 4 adantr ( ( 𝜑𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → 𝐴𝑋 )
110 5 adantr ( ( 𝜑𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂𝐴 ) ∈ ℝ )
111 inss1 ( 𝐴 ∩ ( 𝐹𝑛 ) ) ⊆ 𝐴
112 111 a1i ( ( 𝜑𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝐴 ∩ ( 𝐹𝑛 ) ) ⊆ 𝐴 )
113 108 3 109 110 112 omessre ( ( 𝜑𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) ∈ ℝ )
114 113 recnd ( ( 𝜑𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) ∈ ℂ )
115 114 adantlr ( ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) ∈ ℂ )
116 fveq2 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
117 116 ineq2d ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐴 ∩ ( 𝐹𝑛 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
118 117 fveq2d ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) )
119 107 115 118 fsump1 ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
120 119 3adant3 ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
121 oveq1 ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
122 121 3ad2ant3 ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
123 fzssp1 ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... ( 𝑗 + 1 ) )
124 iunss1 ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... ( 𝑗 + 1 ) ) → 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ⊆ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) )
125 123 124 ax-mp 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ⊆ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 )
126 125 a1i ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ⊆ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) )
127 oveq2 ( 𝑛 = 𝑗 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑗 ) )
128 127 iuneq1d ( 𝑛 = 𝑗 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) )
129 106 6 eleqtrrdi ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗𝑍 )
130 ovex ( 𝑀 ... 𝑗 ) ∈ V
131 130 87 iunex 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∈ V
132 131 a1i ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∈ V )
133 8 128 129 132 fvmptd3 ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺𝑗 ) = 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) )
134 oveq2 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑗 + 1 ) ) )
135 134 iuneq1d ( 𝑛 = ( 𝑗 + 1 ) → 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) )
136 peano2uz ( 𝑗 ∈ ( ℤ𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ𝑀 ) )
137 106 136 syl ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ ( ℤ𝑀 ) )
138 6 eqcomi ( ℤ𝑀 ) = 𝑍
139 137 138 eleqtrdi ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑗 + 1 ) ∈ 𝑍 )
140 ovex ( 𝑀 ... ( 𝑗 + 1 ) ) ∈ V
141 140 87 iunex 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ∈ V
142 141 a1i ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ∈ V )
143 8 135 139 142 fvmptd3 ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) )
144 133 143 sseq12d ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ↔ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ⊆ 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) )
145 126 144 mpbird ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) )
146 inabs3 ( ( 𝐺𝑗 ) ⊆ ( 𝐺 ‘ ( 𝑗 + 1 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) = ( 𝐴 ∩ ( 𝐺𝑗 ) ) )
147 145 146 syl ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) = ( 𝐴 ∩ ( 𝐺𝑗 ) ) )
148 147 fveq2d ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) )
149 148 eqcomd ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) )
150 149 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) )
151 elfzoelz ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ℤ )
152 fzval3 ( 𝑗 ∈ ℤ → ( 𝑀 ... 𝑗 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) )
153 151 152 syl ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑀 ... 𝑗 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) )
154 153 eqcomd ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝑀 ..^ ( 𝑗 + 1 ) ) = ( 𝑀 ... 𝑗 ) )
155 154 iuneq1d ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) )
156 155 difeq2d ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
157 156 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
158 fveq2 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐸𝑛 ) = ( 𝐸 ‘ ( 𝑗 + 1 ) ) )
159 oveq2 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑀 ..^ 𝑛 ) = ( 𝑀 ..^ ( 𝑗 + 1 ) ) )
160 159 iuneq1d ( 𝑛 = ( 𝑗 + 1 ) → 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) )
161 158 160 difeq12d ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) )
162 fvex ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∈ V
163 difexg ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∈ V → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) ∈ V )
164 162 163 ax-mp ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) ∈ V
165 164 a1i ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) ∈ V )
166 9 161 139 165 fvmptd3 ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) )
167 166 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ..^ ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) ) )
168 nfcv 𝑖 ( 𝐸 ‘ ( 𝑗 + 1 ) )
169 fveq2 ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐸𝑖 ) = ( 𝐸 ‘ ( 𝑗 + 1 ) ) )
170 168 106 169 iunp1 ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑖 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝐸𝑖 ) = ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) )
171 143 170 eqtrd ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) )
172 171 133 difeq12d ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) = ( ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
173 difundir ( ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) = ( ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
174 difid ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) = ∅
175 174 uneq1i ( ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) ) = ( ∅ ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
176 0un ( ∅ ∪ ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) )
177 173 175 176 3eqtri ( ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) )
178 177 a1i ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∪ ( 𝐸 ‘ ( 𝑗 + 1 ) ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
179 172 178 eqtrd ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
180 179 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) = ( ( 𝐸 ‘ ( 𝑗 + 1 ) ) ∖ 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ) )
181 157 167 180 3eqtr4d ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) )
182 181 ineq2d ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) ) )
183 indif2 ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) ) = ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) )
184 183 eqcomi ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) )
185 184 a1i ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) = ( 𝐴 ∩ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐺𝑗 ) ) ) )
186 182 185 eqtr4d ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) )
187 186 fveq2d ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) )
188 150 187 oveq12d ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) )
189 inss1 ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ⊆ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) )
190 inss1 ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝐴
191 189 190 sstri ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ⊆ 𝐴
192 191 a1i ( 𝜑 → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ⊆ 𝐴 )
193 1 3 4 5 192 omessre ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) ∈ ℝ )
194 193 adantr ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) ∈ ℝ )
195 1 adantr ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑂 ∈ OutMeas )
196 4 adantr ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝐴𝑋 )
197 5 adantr ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂𝐴 ) ∈ ℝ )
198 difss ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ⊆ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) )
199 198 190 sstri ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ⊆ 𝐴
200 199 a1i ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ⊆ 𝐴 )
201 195 3 196 197 200 omessre ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ∈ ℝ )
202 rexadd ( ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) )
203 194 201 202 syl2anc ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) )
204 203 eqcomd ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) )
205 133 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐺𝑗 ) = 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) )
206 nfv 𝑖 𝜑
207 fzfid ( 𝜑 → ( 𝑀 ... 𝑗 ) ∈ Fin )
208 7 adantr ( ( 𝜑𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → 𝐸 : 𝑍𝑆 )
209 elfzuz ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → 𝑖 ∈ ( ℤ𝑀 ) )
210 138 a1i ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → ( ℤ𝑀 ) = 𝑍 )
211 209 210 eleqtrd ( 𝑖 ∈ ( 𝑀 ... 𝑗 ) → 𝑖𝑍 )
212 211 adantl ( ( 𝜑𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑖𝑍 )
213 208 212 ffvelrnd ( ( 𝜑𝑖 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐸𝑖 ) ∈ 𝑆 )
214 206 1 2 207 213 caragenfiiuncl ( 𝜑 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∈ 𝑆 )
215 214 adantr ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → 𝑖 ∈ ( 𝑀 ... 𝑗 ) ( 𝐸𝑖 ) ∈ 𝑆 )
216 205 215 eqeltrd ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐺𝑗 ) ∈ 𝑆 )
217 4 ssinss1d ( 𝜑 → ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝑋 )
218 217 adantr ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ⊆ 𝑋 )
219 195 2 3 216 218 caragensplit ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∩ ( 𝐺𝑗 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∖ ( 𝐺𝑗 ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) )
220 188 204 219 3eqtrd ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) )
221 220 3adant3 ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) )
222 120 122 221 3eqtrd ( ( 𝜑𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) )
223 101 102 105 222 syl3anc ( ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ∧ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) ∧ 𝜑 ) → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) )
224 223 3exp ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → ( ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝑗 ) ) ) ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) ) )
225 21 28 35 42 100 224 fzind2 ( 𝐾 ∈ ( 𝑀 ... 𝐾 ) → ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝐾 ) ) ) ) )
226 13 14 225 sylc ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝐾 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺𝐾 ) ) ) )