Step |
Hyp |
Ref |
Expression |
1 |
|
carageniuncllem2.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
carageniuncllem2.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
carageniuncllem2.x |
⊢ 𝑋 = ∪ dom 𝑂 |
4 |
|
carageniuncllem2.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
5 |
|
carageniuncllem2.re |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
6 |
|
carageniuncllem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
|
carageniuncllem2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
8 |
|
carageniuncllem2.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑆 ) |
9 |
|
carageniuncllem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
10 |
|
carageniuncllem2.g |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
11 |
|
carageniuncllem2.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
12 |
|
inss1 |
⊢ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ 𝐴 |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
14 |
1 3 4 5 13
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
15 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
16 |
1 3 4 5 15
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
17 |
|
rexadd |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
19 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
21 |
1 3
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
22 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝐴 ∈ V ) |
23 |
4 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
24 |
|
inex1g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
26 |
|
elpwg |
⊢ ( ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V → ( ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ↔ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ↔ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) ) |
28 |
20 27
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ) |
30 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
31 |
29 30
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) |
32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
33 |
32
|
ineq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
34 |
33
|
cbvmptv |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
35 |
34
|
feq1i |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) ) |
37 |
31 36
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
39 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
40 |
34
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
42 |
41
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
43 |
42
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
44 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
45 |
44 7 8 11
|
iundjiun |
⊢ ( 𝜑 → ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑀 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ∧ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∧ Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |
46 |
45
|
simplrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
47 |
46
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) |
48 |
47
|
ineq2d |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |
49 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) |
50 |
49
|
eqcomi |
⊢ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) |
51 |
50
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
52 |
48 51
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
54 |
53 14
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
55 |
43 54
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) |
56 |
1 3 7 37 55 9
|
omeiunltfirp |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) ) |
57 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
58 |
|
elpwinss |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑧 ⊆ 𝑍 ) |
59 |
58
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑧 ⊆ 𝑍 ) |
60 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑧 ) |
61 |
59 60
|
sseldd |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑍 ) |
62 |
61
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑍 ) |
63 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
64 |
62 63 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
65 |
64
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
66 |
65
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
67 |
66
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) = ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
68 |
57 67
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) ↔ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
69 |
68
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
70 |
69
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
71 |
56 70
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
72 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑀 ∈ ℤ ) |
73 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ⊆ 𝑍 ) |
74 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑧 ∈ Fin ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
76 |
72 7 73 75
|
uzfissfz |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ∃ 𝑘 ∈ 𝑍 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
77 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ∃ 𝑘 ∈ 𝑍 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
78 |
54
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
79 |
|
fzfid |
⊢ ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → ( 𝑀 ... 𝑘 ) ∈ Fin ) |
80 |
|
id |
⊢ ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
81 |
|
ssfi |
⊢ ( ( ( 𝑀 ... 𝑘 ) ∈ Fin ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑧 ∈ Fin ) |
82 |
79 80 81
|
syl2anc |
⊢ ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → 𝑧 ∈ Fin ) |
83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑧 ∈ Fin ) |
84 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝑂 ∈ OutMeas ) |
85 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝐴 ⊆ 𝑋 ) |
86 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
87 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 |
88 |
87
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
89 |
84 3 85 86 88
|
omessre |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
90 |
83 89
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
91 |
9
|
rpred |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑌 ∈ ℝ ) |
93 |
90 92
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
94 |
93
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
95 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑘 ) ∈ Fin ) |
96 |
87
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
97 |
1 3 4 5 96
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
99 |
95 98
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
101 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑌 ∈ ℝ ) |
102 |
100 101
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
104 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
105 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
106 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑀 ... 𝑘 ) ∈ Fin ) |
107 |
98
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
108 |
|
0xr |
⊢ 0 ∈ ℝ* |
109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → 0 ∈ ℝ* ) |
110 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
111 |
110
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → +∞ ∈ ℝ* ) |
112 |
1 3 20
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
114 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
115 |
109 111 113 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
116 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
117 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
118 |
106 107 116 117
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
119 |
90 105 92 118
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ≤ ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
120 |
119
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ≤ ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
121 |
78 94 103 104 120
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
122 |
121
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
123 |
122
|
reximdv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( ∃ 𝑘 ∈ 𝑍 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
124 |
77 123
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
125 |
124
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
126 |
71 125
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
127 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
128 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
129 |
127 128
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
130 |
129
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
131 |
130
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
132 |
126 131
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
133 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
134 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑂 ∈ OutMeas ) |
135 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ⊆ 𝑋 ) |
136 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
137 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
138 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
139 |
134 2 3 135 136 7 137 10 11 138
|
carageniuncllem1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) |
140 |
139
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
142 |
133 141
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
143 |
142
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) ) |
144 |
143
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) ) |
145 |
132 144
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
146 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
147 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
148 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝐴 |
149 |
148
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝐴 ) |
150 |
134 3 135 136 149
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
151 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑌 ∈ ℝ ) |
152 |
150 151
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ∈ ℝ ) |
153 |
152
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ∈ ℝ ) |
154 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝐴 ) |
155 |
134 3 135 136 154
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
156 |
155
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
157 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
158 |
146 153 157
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ≤ ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
159 |
135
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝑋 ) |
160 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) ) |
161 |
160
|
iuneq1d |
⊢ ( 𝑛 = 𝑘 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ) |
162 |
|
ovex |
⊢ ( 𝑀 ... 𝑘 ) ∈ V |
163 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
164 |
162 163
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
165 |
161 10 164
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ) |
166 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑛 ) ) |
167 |
166
|
cbviunv |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) |
168 |
167
|
a1i |
⊢ ( 𝑘 ∈ 𝑍 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
169 |
165 168
|
eqtrd |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
170 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑘 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
171 |
7
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
172 |
171
|
a1i |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑘 ) → ( ℤ≥ ‘ 𝑀 ) = 𝑍 ) |
173 |
170 172
|
eleqtrd |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑘 ) → 𝑖 ∈ 𝑍 ) |
174 |
173
|
ssriv |
⊢ ( 𝑀 ... 𝑘 ) ⊆ 𝑍 |
175 |
|
iunss1 |
⊢ ( ( 𝑀 ... 𝑘 ) ⊆ 𝑍 → ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
176 |
174 175
|
ax-mp |
⊢ ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) |
177 |
176
|
a1i |
⊢ ( 𝑘 ∈ 𝑍 → ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
178 |
169 177
|
eqsstrd |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
179 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
180 |
179
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) |
181 |
134 3 159 180
|
omessle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ≤ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) |
182 |
181
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ≤ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) |
183 |
146 147 153 156 158 182
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
184 |
150
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℂ ) |
185 |
91
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑌 ∈ ℂ ) |
187 |
155
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℂ ) |
188 |
184 186 187
|
add32d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) + 𝑌 ) ) |
189 |
|
rexadd |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
190 |
150 155 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
191 |
190
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
192 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
193 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
194 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ) → 𝑖 ∈ 𝑍 ) |
195 |
193 194
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
196 |
192 1 2 95 195
|
caragenfiiuncl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
197 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
198 |
10 161 138 197
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ) |
199 |
198 197
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
200 |
134 2 3 199 135
|
caragensplit |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
201 |
191 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
202 |
201
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) + 𝑌 ) = ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
203 |
188 202
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
204 |
203
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
205 |
183 204
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
206 |
205
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) ) ) |
207 |
206
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) ) |
208 |
145 207
|
mpd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
209 |
18 208
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |