| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carageniuncllem2.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
carageniuncllem2.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 3 |
|
carageniuncllem2.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 4 |
|
carageniuncllem2.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 5 |
|
carageniuncllem2.re |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
|
carageniuncllem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 |
|
carageniuncllem2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 8 |
|
carageniuncllem2.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 9 |
|
carageniuncllem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
| 10 |
|
carageniuncllem2.g |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
| 11 |
|
carageniuncllem2.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 12 |
|
inss1 |
⊢ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ 𝐴 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
| 14 |
1 3 4 5 13
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 15 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
| 16 |
1 3 4 5 15
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 17 |
|
rexadd |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 19 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 21 |
1 3
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 22 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝐴 ∈ V ) |
| 23 |
4 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 24 |
|
inex1g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
| 26 |
|
elpwg |
⊢ ( ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V → ( ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ↔ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ↔ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑋 ) ) |
| 28 |
20 27
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝒫 𝑋 ) |
| 30 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 31 |
29 30
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) |
| 32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 33 |
32
|
ineq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 34 |
33
|
cbvmptv |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 35 |
34
|
feq1i |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) ) |
| 37 |
31 36
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ 𝒫 𝑋 ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 39 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
| 40 |
34
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 42 |
41
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 43 |
42
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 44 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 45 |
44 7 8 11
|
iundjiun |
⊢ ( 𝜑 → ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑀 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ∧ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∧ Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |
| 46 |
45
|
simplrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 47 |
46
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) |
| 48 |
47
|
ineq2d |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |
| 49 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) |
| 50 |
49
|
eqcomi |
⊢ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 52 |
48 51
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 54 |
53 14
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 55 |
43 54
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 56 |
1 3 7 37 55 9
|
omeiunltfirp |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) ) |
| 57 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 58 |
|
elpwinss |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑧 ⊆ 𝑍 ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑧 ⊆ 𝑍 ) |
| 60 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑧 ) |
| 61 |
59 60
|
sseldd |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑍 ) |
| 62 |
61
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝑛 ∈ 𝑍 ) |
| 63 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ∈ V ) |
| 64 |
62 63 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 65 |
64
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 66 |
65
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) = Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 67 |
66
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) = ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 68 |
57 67
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) ↔ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 69 |
68
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 70 |
69
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐴 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ‘ 𝑛 ) ) + 𝑌 ) → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 71 |
56 70
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 72 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑀 ∈ ℤ ) |
| 73 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ⊆ 𝑍 ) |
| 74 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑧 ∈ Fin ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 76 |
72 7 73 75
|
uzfissfz |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ∃ 𝑘 ∈ 𝑍 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
| 77 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ∃ 𝑘 ∈ 𝑍 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
| 78 |
54
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 79 |
|
fzfid |
⊢ ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → ( 𝑀 ... 𝑘 ) ∈ Fin ) |
| 80 |
|
id |
⊢ ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
| 81 |
|
ssfi |
⊢ ( ( ( 𝑀 ... 𝑘 ) ∈ Fin ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑧 ∈ Fin ) |
| 82 |
79 80 81
|
syl2anc |
⊢ ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → 𝑧 ∈ Fin ) |
| 83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑧 ∈ Fin ) |
| 84 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝑂 ∈ OutMeas ) |
| 85 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → 𝐴 ⊆ 𝑋 ) |
| 86 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 87 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 |
| 88 |
87
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
| 89 |
84 3 85 86 88
|
omessre |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ 𝑧 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 90 |
83 89
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 91 |
9
|
rpred |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑌 ∈ ℝ ) |
| 93 |
90 92
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
| 94 |
93
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
| 95 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑘 ) ∈ Fin ) |
| 96 |
87
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐴 ) |
| 97 |
1 3 4 5 96
|
omessre |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 99 |
95 98
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 101 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑌 ∈ ℝ ) |
| 102 |
100 101
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ∈ ℝ ) |
| 104 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 105 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 106 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑀 ... 𝑘 ) ∈ Fin ) |
| 107 |
98
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 108 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → 0 ∈ ℝ* ) |
| 110 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 111 |
110
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → +∞ ∈ ℝ* ) |
| 112 |
1 3 20
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 114 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 115 |
109 111 113 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 116 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → 0 ≤ ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 117 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) |
| 118 |
106 107 116 117
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 119 |
90 105 92 118
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ≤ ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 120 |
119
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ≤ ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 121 |
78 94 103 104 120
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ∧ 𝑧 ⊆ ( 𝑀 ... 𝑘 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 122 |
121
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 123 |
122
|
reximdv |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( ∃ 𝑘 ∈ 𝑍 𝑧 ⊆ ( 𝑀 ... 𝑘 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 124 |
77 123
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 125 |
124
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝒫 𝑍 ∩ Fin ) ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ 𝑧 ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 126 |
71 125
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 127 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 128 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 129 |
127 128
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 130 |
129
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 131 |
130
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) ) |
| 132 |
126 131
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 133 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) |
| 134 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑂 ∈ OutMeas ) |
| 135 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ⊆ 𝑋 ) |
| 136 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 137 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 138 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
| 139 |
134 2 3 135 136 7 137 10 11 138
|
carageniuncllem1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 140 |
139
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
| 141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
| 142 |
133 141
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
| 143 |
142
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) ) |
| 144 |
143
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐹 ‘ 𝑛 ) ) ) + 𝑌 ) → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) ) |
| 145 |
132 144
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
| 146 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 147 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 148 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝐴 |
| 149 |
148
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝐴 ) |
| 150 |
134 3 135 136 149
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 151 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑌 ∈ ℝ ) |
| 152 |
150 151
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ∈ ℝ ) |
| 153 |
152
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ∈ ℝ ) |
| 154 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝐴 ) |
| 155 |
134 3 135 136 154
|
omessre |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 156 |
155
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 157 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
| 158 |
146 153 157
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ≤ ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) |
| 159 |
135
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ⊆ 𝑋 ) |
| 160 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑘 ) ) |
| 161 |
160
|
iuneq1d |
⊢ ( 𝑛 = 𝑘 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ) |
| 162 |
|
ovex |
⊢ ( 𝑀 ... 𝑘 ) ∈ V |
| 163 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
| 164 |
162 163
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
| 165 |
161 10 164
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ) |
| 166 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑛 ) ) |
| 167 |
166
|
cbviunv |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) |
| 168 |
167
|
a1i |
⊢ ( 𝑘 ∈ 𝑍 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
| 169 |
165 168
|
eqtrd |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ) |
| 170 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑘 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 171 |
7
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 172 |
171
|
a1i |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑘 ) → ( ℤ≥ ‘ 𝑀 ) = 𝑍 ) |
| 173 |
170 172
|
eleqtrd |
⊢ ( 𝑖 ∈ ( 𝑀 ... 𝑘 ) → 𝑖 ∈ 𝑍 ) |
| 174 |
173
|
ssriv |
⊢ ( 𝑀 ... 𝑘 ) ⊆ 𝑍 |
| 175 |
|
iunss1 |
⊢ ( ( 𝑀 ... 𝑘 ) ⊆ 𝑍 → ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 176 |
174 175
|
ax-mp |
⊢ ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) |
| 177 |
176
|
a1i |
⊢ ( 𝑘 ∈ 𝑍 → ∪ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 178 |
169 177
|
eqsstrd |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 179 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 180 |
179
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) |
| 181 |
134 3 159 180
|
omessle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ≤ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 182 |
181
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ≤ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 183 |
146 147 153 156 158 182
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 184 |
150
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 185 |
91
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑌 ∈ ℂ ) |
| 187 |
155
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 188 |
184 186 187
|
add32d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) + 𝑌 ) ) |
| 189 |
|
rexadd |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ∧ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 190 |
150 155 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 191 |
190
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 192 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
| 193 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 194 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ) → 𝑖 ∈ 𝑍 ) |
| 195 |
193 194
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
| 196 |
192 1 2 95 195
|
caragenfiiuncl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
| 197 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ∈ 𝑆 ) |
| 198 |
10 161 138 197
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑘 ) ( 𝐸 ‘ 𝑖 ) ) |
| 199 |
198 197
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 200 |
134 2 3 199 135
|
caragensplit |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 201 |
191 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 202 |
201
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) + 𝑌 ) = ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
| 203 |
188 202
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
| 204 |
203
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) + ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐺 ‘ 𝑘 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
| 205 |
183 204
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
| 206 |
205
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) ) ) |
| 207 |
206
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) < ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐺 ‘ 𝑘 ) ) ) + 𝑌 ) → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) ) |
| 208 |
145 207
|
mpd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) + ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |
| 209 |
18 208
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑌 ) ) |