| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenfiiuncl.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
caragenfiiuncl.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 3 |
|
caragenfiiuncl.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 4 |
|
caragenfiiuncl.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 5 |
|
caragenfiiuncl.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 6 |
|
iuneq1 |
⊢ ( 𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵 ) |
| 7 |
|
0iun |
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
| 8 |
7
|
a1i |
⊢ ( 𝐴 = ∅ → ∪ 𝑘 ∈ ∅ 𝐵 = ∅ ) |
| 9 |
6 8
|
eqtrd |
⊢ ( 𝐴 = ∅ → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∪ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 11 |
2 3
|
caragen0 |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∅ ∈ 𝑆 ) |
| 13 |
10 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 14 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝜑 ) |
| 15 |
|
neqne |
⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑘 𝐴 ≠ ∅ |
| 18 |
1 17
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐴 ≠ ∅ ) |
| 19 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 20 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑂 ∈ OutMeas ) |
| 21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 22 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 23 |
20 3 21 22
|
caragenuncl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ) |
| 24 |
23
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ) |
| 25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 27 |
18 19 24 25 26
|
fiiuncl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 28 |
14 16 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 29 |
13 28
|
pm2.61dan |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |