Metamath Proof Explorer


Theorem caragenfiiuncl

Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenfiiuncl.kph 𝑘 𝜑
caragenfiiuncl.o ( 𝜑𝑂 ∈ OutMeas )
caragenfiiuncl.s 𝑆 = ( CaraGen ‘ 𝑂 )
caragenfiiuncl.a ( 𝜑𝐴 ∈ Fin )
caragenfiiuncl.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑆 )
Assertion caragenfiiuncl ( 𝜑 𝑘𝐴 𝐵𝑆 )

Proof

Step Hyp Ref Expression
1 caragenfiiuncl.kph 𝑘 𝜑
2 caragenfiiuncl.o ( 𝜑𝑂 ∈ OutMeas )
3 caragenfiiuncl.s 𝑆 = ( CaraGen ‘ 𝑂 )
4 caragenfiiuncl.a ( 𝜑𝐴 ∈ Fin )
5 caragenfiiuncl.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑆 )
6 iuneq1 ( 𝐴 = ∅ → 𝑘𝐴 𝐵 = 𝑘 ∈ ∅ 𝐵 )
7 0iun 𝑘 ∈ ∅ 𝐵 = ∅
8 7 a1i ( 𝐴 = ∅ → 𝑘 ∈ ∅ 𝐵 = ∅ )
9 6 8 eqtrd ( 𝐴 = ∅ → 𝑘𝐴 𝐵 = ∅ )
10 9 adantl ( ( 𝜑𝐴 = ∅ ) → 𝑘𝐴 𝐵 = ∅ )
11 2 3 caragen0 ( 𝜑 → ∅ ∈ 𝑆 )
12 11 adantr ( ( 𝜑𝐴 = ∅ ) → ∅ ∈ 𝑆 )
13 10 12 eqeltrd ( ( 𝜑𝐴 = ∅ ) → 𝑘𝐴 𝐵𝑆 )
14 simpl ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝜑 )
15 neqne ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ )
16 15 adantl ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ )
17 nfv 𝑘 𝐴 ≠ ∅
18 1 17 nfan 𝑘 ( 𝜑𝐴 ≠ ∅ )
19 5 adantlr ( ( ( 𝜑𝐴 ≠ ∅ ) ∧ 𝑘𝐴 ) → 𝐵𝑆 )
20 2 3ad2ant1 ( ( 𝜑𝑥𝑆𝑦𝑆 ) → 𝑂 ∈ OutMeas )
21 simp2 ( ( 𝜑𝑥𝑆𝑦𝑆 ) → 𝑥𝑆 )
22 simp3 ( ( 𝜑𝑥𝑆𝑦𝑆 ) → 𝑦𝑆 )
23 20 3 21 22 caragenuncl ( ( 𝜑𝑥𝑆𝑦𝑆 ) → ( 𝑥𝑦 ) ∈ 𝑆 )
24 23 3adant1r ( ( ( 𝜑𝐴 ≠ ∅ ) ∧ 𝑥𝑆𝑦𝑆 ) → ( 𝑥𝑦 ) ∈ 𝑆 )
25 4 adantr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴 ∈ Fin )
26 simpr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ )
27 18 19 24 25 26 fiiuncl ( ( 𝜑𝐴 ≠ ∅ ) → 𝑘𝐴 𝐵𝑆 )
28 14 16 27 syl2anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑘𝐴 𝐵𝑆 )
29 13 28 pm2.61dan ( 𝜑 𝑘𝐴 𝐵𝑆 )