Metamath Proof Explorer


Theorem caragenfiiuncl

Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenfiiuncl.kph k φ
caragenfiiuncl.o φ O OutMeas
caragenfiiuncl.s S = CaraGen O
caragenfiiuncl.a φ A Fin
caragenfiiuncl.b φ k A B S
Assertion caragenfiiuncl φ k A B S

Proof

Step Hyp Ref Expression
1 caragenfiiuncl.kph k φ
2 caragenfiiuncl.o φ O OutMeas
3 caragenfiiuncl.s S = CaraGen O
4 caragenfiiuncl.a φ A Fin
5 caragenfiiuncl.b φ k A B S
6 iuneq1 A = k A B = k B
7 0iun k B =
8 7 a1i A = k B =
9 6 8 eqtrd A = k A B =
10 9 adantl φ A = k A B =
11 2 3 caragen0 φ S
12 11 adantr φ A = S
13 10 12 eqeltrd φ A = k A B S
14 simpl φ ¬ A = φ
15 neqne ¬ A = A
16 15 adantl φ ¬ A = A
17 nfv k A
18 1 17 nfan k φ A
19 5 adantlr φ A k A B S
20 2 3ad2ant1 φ x S y S O OutMeas
21 simp2 φ x S y S x S
22 simp3 φ x S y S y S
23 20 3 21 22 caragenuncl φ x S y S x y S
24 23 3adant1r φ A x S y S x y S
25 4 adantr φ A A Fin
26 simpr φ A A
27 18 19 24 25 26 fiiuncl φ A k A B S
28 14 16 27 syl2anc φ ¬ A = k A B S
29 13 28 pm2.61dan φ k A B S