Step |
Hyp |
Ref |
Expression |
1 |
|
fiiuncl.xph |
|
2 |
|
fiiuncl.b |
|
3 |
|
fiiuncl.un |
|
4 |
|
fiiuncl.a |
|
5 |
|
fiiuncl.n0 |
|
6 |
|
neeq1 |
|
7 |
|
iuneq1 |
|
8 |
7
|
eleq1d |
|
9 |
6 8
|
imbi12d |
|
10 |
|
neeq1 |
|
11 |
|
iuneq1 |
|
12 |
11
|
eleq1d |
|
13 |
10 12
|
imbi12d |
|
14 |
|
neeq1 |
|
15 |
|
iuneq1 |
|
16 |
15
|
eleq1d |
|
17 |
14 16
|
imbi12d |
|
18 |
|
neeq1 |
|
19 |
|
iuneq1 |
|
20 |
19
|
eleq1d |
|
21 |
18 20
|
imbi12d |
|
22 |
|
neirr |
|
23 |
22
|
pm2.21i |
|
24 |
23
|
a1i |
|
25 |
|
iunxun |
|
26 |
|
nfcsb1v |
|
27 |
|
vex |
|
28 |
|
csbeq1a |
|
29 |
26 27 28
|
iunxsnf |
|
30 |
29
|
uneq2i |
|
31 |
25 30
|
eqtri |
|
32 |
|
iuneq1 |
|
33 |
|
0iun |
|
34 |
33
|
a1i |
|
35 |
32 34
|
eqtrd |
|
36 |
35
|
uneq1d |
|
37 |
|
0un |
|
38 |
|
unidm |
|
39 |
37 38
|
eqtr4i |
|
40 |
39
|
a1i |
|
41 |
36 40
|
eqtrd |
|
42 |
41
|
adantl |
|
43 |
|
simpl |
|
44 |
|
eldifi |
|
45 |
44
|
adantl |
|
46 |
|
nfv |
|
47 |
1 46
|
nfan |
|
48 |
|
nfcv |
|
49 |
26 48
|
nfel |
|
50 |
47 49
|
nfim |
|
51 |
|
eleq1 |
|
52 |
51
|
anbi2d |
|
53 |
28
|
eleq1d |
|
54 |
52 53
|
imbi12d |
|
55 |
50 54 2
|
chvarfv |
|
56 |
38 55
|
eqeltrid |
|
57 |
43 45 56
|
syl2anc |
|
58 |
57
|
adantr |
|
59 |
42 58
|
eqeltrd |
|
60 |
59
|
adantlr |
|
61 |
|
simplll |
|
62 |
44
|
ad3antlr |
|
63 |
|
neqne |
|
64 |
63
|
adantl |
|
65 |
|
simpl |
|
66 |
64 65
|
mpd |
|
67 |
66
|
adantll |
|
68 |
55
|
3adant3 |
|
69 |
|
simp3 |
|
70 |
|
simp1 |
|
71 |
70 69 68
|
3jca |
|
72 |
|
eleq1 |
|
73 |
72
|
3anbi3d |
|
74 |
|
uneq2 |
|
75 |
74
|
eleq1d |
|
76 |
73 75
|
imbi12d |
|
77 |
76
|
imbi2d |
|
78 |
|
eleq1 |
|
79 |
78
|
3anbi2d |
|
80 |
|
uneq1 |
|
81 |
80
|
eleq1d |
|
82 |
79 81
|
imbi12d |
|
83 |
82 3
|
vtoclg |
|
84 |
77 83
|
vtoclg |
|
85 |
68 69 71 84
|
syl3c |
|
86 |
61 62 67 85
|
syl3anc |
|
87 |
60 86
|
pm2.61dan |
|
88 |
31 87
|
eqeltrid |
|
89 |
88
|
a1d |
|
90 |
89
|
ex |
|
91 |
90
|
adantrl |
|
92 |
9 13 17 21 24 91 4
|
findcard2d |
|
93 |
5 92
|
mpd |
|