Metamath Proof Explorer


Theorem caragenfiiuncl

Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenfiiuncl.kph
|- F/ k ph
caragenfiiuncl.o
|- ( ph -> O e. OutMeas )
caragenfiiuncl.s
|- S = ( CaraGen ` O )
caragenfiiuncl.a
|- ( ph -> A e. Fin )
caragenfiiuncl.b
|- ( ( ph /\ k e. A ) -> B e. S )
Assertion caragenfiiuncl
|- ( ph -> U_ k e. A B e. S )

Proof

Step Hyp Ref Expression
1 caragenfiiuncl.kph
 |-  F/ k ph
2 caragenfiiuncl.o
 |-  ( ph -> O e. OutMeas )
3 caragenfiiuncl.s
 |-  S = ( CaraGen ` O )
4 caragenfiiuncl.a
 |-  ( ph -> A e. Fin )
5 caragenfiiuncl.b
 |-  ( ( ph /\ k e. A ) -> B e. S )
6 iuneq1
 |-  ( A = (/) -> U_ k e. A B = U_ k e. (/) B )
7 0iun
 |-  U_ k e. (/) B = (/)
8 7 a1i
 |-  ( A = (/) -> U_ k e. (/) B = (/) )
9 6 8 eqtrd
 |-  ( A = (/) -> U_ k e. A B = (/) )
10 9 adantl
 |-  ( ( ph /\ A = (/) ) -> U_ k e. A B = (/) )
11 2 3 caragen0
 |-  ( ph -> (/) e. S )
12 11 adantr
 |-  ( ( ph /\ A = (/) ) -> (/) e. S )
13 10 12 eqeltrd
 |-  ( ( ph /\ A = (/) ) -> U_ k e. A B e. S )
14 simpl
 |-  ( ( ph /\ -. A = (/) ) -> ph )
15 neqne
 |-  ( -. A = (/) -> A =/= (/) )
16 15 adantl
 |-  ( ( ph /\ -. A = (/) ) -> A =/= (/) )
17 nfv
 |-  F/ k A =/= (/)
18 1 17 nfan
 |-  F/ k ( ph /\ A =/= (/) )
19 5 adantlr
 |-  ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S )
20 2 3ad2ant1
 |-  ( ( ph /\ x e. S /\ y e. S ) -> O e. OutMeas )
21 simp2
 |-  ( ( ph /\ x e. S /\ y e. S ) -> x e. S )
22 simp3
 |-  ( ( ph /\ x e. S /\ y e. S ) -> y e. S )
23 20 3 21 22 caragenuncl
 |-  ( ( ph /\ x e. S /\ y e. S ) -> ( x u. y ) e. S )
24 23 3adant1r
 |-  ( ( ( ph /\ A =/= (/) ) /\ x e. S /\ y e. S ) -> ( x u. y ) e. S )
25 4 adantr
 |-  ( ( ph /\ A =/= (/) ) -> A e. Fin )
26 simpr
 |-  ( ( ph /\ A =/= (/) ) -> A =/= (/) )
27 18 19 24 25 26 fiiuncl
 |-  ( ( ph /\ A =/= (/) ) -> U_ k e. A B e. S )
28 14 16 27 syl2anc
 |-  ( ( ph /\ -. A = (/) ) -> U_ k e. A B e. S )
29 13 28 pm2.61dan
 |-  ( ph -> U_ k e. A B e. S )