Step |
Hyp |
Ref |
Expression |
1 |
|
caragenfiiuncl.kph |
|- F/ k ph |
2 |
|
caragenfiiuncl.o |
|- ( ph -> O e. OutMeas ) |
3 |
|
caragenfiiuncl.s |
|- S = ( CaraGen ` O ) |
4 |
|
caragenfiiuncl.a |
|- ( ph -> A e. Fin ) |
5 |
|
caragenfiiuncl.b |
|- ( ( ph /\ k e. A ) -> B e. S ) |
6 |
|
iuneq1 |
|- ( A = (/) -> U_ k e. A B = U_ k e. (/) B ) |
7 |
|
0iun |
|- U_ k e. (/) B = (/) |
8 |
7
|
a1i |
|- ( A = (/) -> U_ k e. (/) B = (/) ) |
9 |
6 8
|
eqtrd |
|- ( A = (/) -> U_ k e. A B = (/) ) |
10 |
9
|
adantl |
|- ( ( ph /\ A = (/) ) -> U_ k e. A B = (/) ) |
11 |
2 3
|
caragen0 |
|- ( ph -> (/) e. S ) |
12 |
11
|
adantr |
|- ( ( ph /\ A = (/) ) -> (/) e. S ) |
13 |
10 12
|
eqeltrd |
|- ( ( ph /\ A = (/) ) -> U_ k e. A B e. S ) |
14 |
|
simpl |
|- ( ( ph /\ -. A = (/) ) -> ph ) |
15 |
|
neqne |
|- ( -. A = (/) -> A =/= (/) ) |
16 |
15
|
adantl |
|- ( ( ph /\ -. A = (/) ) -> A =/= (/) ) |
17 |
|
nfv |
|- F/ k A =/= (/) |
18 |
1 17
|
nfan |
|- F/ k ( ph /\ A =/= (/) ) |
19 |
5
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S ) |
20 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. S /\ y e. S ) -> O e. OutMeas ) |
21 |
|
simp2 |
|- ( ( ph /\ x e. S /\ y e. S ) -> x e. S ) |
22 |
|
simp3 |
|- ( ( ph /\ x e. S /\ y e. S ) -> y e. S ) |
23 |
20 3 21 22
|
caragenuncl |
|- ( ( ph /\ x e. S /\ y e. S ) -> ( x u. y ) e. S ) |
24 |
23
|
3adant1r |
|- ( ( ( ph /\ A =/= (/) ) /\ x e. S /\ y e. S ) -> ( x u. y ) e. S ) |
25 |
4
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
26 |
|
simpr |
|- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
27 |
18 19 24 25 26
|
fiiuncl |
|- ( ( ph /\ A =/= (/) ) -> U_ k e. A B e. S ) |
28 |
14 16 27
|
syl2anc |
|- ( ( ph /\ -. A = (/) ) -> U_ k e. A B e. S ) |
29 |
13 28
|
pm2.61dan |
|- ( ph -> U_ k e. A B e. S ) |