Step |
Hyp |
Ref |
Expression |
1 |
|
caragen0.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caragen0.s |
|- S = ( CaraGen ` O ) |
3 |
|
eqid |
|- U. dom O = U. dom O |
4 |
|
0elpw |
|- (/) e. ~P U. dom O |
5 |
4
|
a1i |
|- ( ph -> (/) e. ~P U. dom O ) |
6 |
|
in0 |
|- ( a i^i (/) ) = (/) |
7 |
6
|
fveq2i |
|- ( O ` ( a i^i (/) ) ) = ( O ` (/) ) |
8 |
|
dif0 |
|- ( a \ (/) ) = a |
9 |
8
|
fveq2i |
|- ( O ` ( a \ (/) ) ) = ( O ` a ) |
10 |
7 9
|
oveq12i |
|- ( ( O ` ( a i^i (/) ) ) +e ( O ` ( a \ (/) ) ) ) = ( ( O ` (/) ) +e ( O ` a ) ) |
11 |
10
|
a1i |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( ( O ` ( a i^i (/) ) ) +e ( O ` ( a \ (/) ) ) ) = ( ( O ` (/) ) +e ( O ` a ) ) ) |
12 |
1
|
ome0 |
|- ( ph -> ( O ` (/) ) = 0 ) |
13 |
12
|
adantr |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( O ` (/) ) = 0 ) |
14 |
13
|
oveq1d |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( ( O ` (/) ) +e ( O ` a ) ) = ( 0 +e ( O ` a ) ) ) |
15 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
16 |
1
|
adantr |
|- ( ( ph /\ a e. ~P U. dom O ) -> O e. OutMeas ) |
17 |
|
elpwi |
|- ( a e. ~P U. dom O -> a C_ U. dom O ) |
18 |
17
|
adantl |
|- ( ( ph /\ a e. ~P U. dom O ) -> a C_ U. dom O ) |
19 |
16 3 18
|
omecl |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( O ` a ) e. ( 0 [,] +oo ) ) |
20 |
15 19
|
sselid |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( O ` a ) e. RR* ) |
21 |
20
|
xaddid2d |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( 0 +e ( O ` a ) ) = ( O ` a ) ) |
22 |
11 14 21
|
3eqtrd |
|- ( ( ph /\ a e. ~P U. dom O ) -> ( ( O ` ( a i^i (/) ) ) +e ( O ` ( a \ (/) ) ) ) = ( O ` a ) ) |
23 |
1 3 2 5 22
|
carageneld |
|- ( ph -> (/) e. S ) |