Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omexrcl.o | |- ( ph -> O e. OutMeas ) |
|
| omexrcl.x | |- X = U. dom O |
||
| omexrcl.a | |- ( ph -> A C_ X ) |
||
| Assertion | omexrcl | |- ( ph -> ( O ` A ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omexrcl.o | |- ( ph -> O e. OutMeas ) |
|
| 2 | omexrcl.x | |- X = U. dom O |
|
| 3 | omexrcl.a | |- ( ph -> A C_ X ) |
|
| 4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 5 | 1 2 3 | omecl | |- ( ph -> ( O ` A ) e. ( 0 [,] +oo ) ) |
| 6 | 4 5 | sselid | |- ( ph -> ( O ` A ) e. RR* ) |