Metamath Proof Explorer


Theorem omexrcl

Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omexrcl.o φOOutMeas
omexrcl.x X=domO
omexrcl.a φAX
Assertion omexrcl φOA*

Proof

Step Hyp Ref Expression
1 omexrcl.o φOOutMeas
2 omexrcl.x X=domO
3 omexrcl.a φAX
4 iccssxr 0+∞*
5 1 2 3 omecl φOA0+∞
6 4 5 sselid φOA*