Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omexrcl.o | ⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) | |
omexrcl.x | ⊢ 𝑋 = ∪ dom 𝑂 | ||
omexrcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
Assertion | omexrcl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omexrcl.o | ⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) | |
2 | omexrcl.x | ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | omexrcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
4 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
5 | 1 2 3 | omecl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
6 | 4 5 | sselid | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ* ) |