| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenunidm.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
caragenunidm.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 3 |
|
caragenunidm.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 4 |
|
dmexg |
⊢ ( 𝑂 ∈ OutMeas → dom 𝑂 ∈ V ) |
| 5 |
|
uniexg |
⊢ ( dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ V ) |
| 6 |
1 4 5
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ V ) |
| 7 |
2 6
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 8 |
|
pwidg |
⊢ ( 𝑋 ∈ V → 𝑋 ∈ 𝒫 𝑋 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑋 ) |
| 10 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
| 11 |
|
dfss2 |
⊢ ( 𝑎 ⊆ 𝑋 ↔ ( 𝑎 ∩ 𝑋 ) = 𝑎 ) |
| 12 |
11
|
biimpi |
⊢ ( 𝑎 ⊆ 𝑋 → ( 𝑎 ∩ 𝑋 ) = 𝑎 ) |
| 13 |
10 12
|
syl |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∩ 𝑋 ) = 𝑎 ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑂 ‘ ( 𝑎 ∩ 𝑋 ) ) = ( 𝑂 ‘ 𝑎 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∩ 𝑋 ) ) = ( 𝑂 ‘ 𝑎 ) ) |
| 16 |
|
ssdif0 |
⊢ ( 𝑎 ⊆ 𝑋 ↔ ( 𝑎 ∖ 𝑋 ) = ∅ ) |
| 17 |
10 16
|
sylib |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∖ 𝑋 ) = ∅ ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑂 ‘ ( 𝑎 ∖ 𝑋 ) ) = ( 𝑂 ‘ ∅ ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝑋 ) ) = ( 𝑂 ‘ ∅ ) ) |
| 20 |
1
|
ome0 |
⊢ ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ∅ ) = 0 ) |
| 22 |
19 21
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝑋 ) ) = 0 ) |
| 23 |
15 22
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑋 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑋 ) ) ) = ( ( 𝑂 ‘ 𝑎 ) +𝑒 0 ) ) |
| 24 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑂 ∈ OutMeas ) |
| 26 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ⊆ 𝑋 ) |
| 27 |
25 2 26
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
| 28 |
24 27
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ 𝑎 ) ∈ ℝ* ) |
| 29 |
28
|
xaddridd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ 𝑎 ) +𝑒 0 ) = ( 𝑂 ‘ 𝑎 ) ) |
| 30 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ 𝑎 ) = ( 𝑂 ‘ 𝑎 ) ) |
| 31 |
23 29 30
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑋 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑋 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
| 32 |
1 2 3 9 31
|
carageneld |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |