Step |
Hyp |
Ref |
Expression |
1 |
|
caragenunidm.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caragenunidm.x |
|- X = U. dom O |
3 |
|
caragenunidm.s |
|- S = ( CaraGen ` O ) |
4 |
|
dmexg |
|- ( O e. OutMeas -> dom O e. _V ) |
5 |
|
uniexg |
|- ( dom O e. _V -> U. dom O e. _V ) |
6 |
1 4 5
|
3syl |
|- ( ph -> U. dom O e. _V ) |
7 |
2 6
|
eqeltrid |
|- ( ph -> X e. _V ) |
8 |
|
pwidg |
|- ( X e. _V -> X e. ~P X ) |
9 |
7 8
|
syl |
|- ( ph -> X e. ~P X ) |
10 |
|
elpwi |
|- ( a e. ~P X -> a C_ X ) |
11 |
|
df-ss |
|- ( a C_ X <-> ( a i^i X ) = a ) |
12 |
11
|
biimpi |
|- ( a C_ X -> ( a i^i X ) = a ) |
13 |
10 12
|
syl |
|- ( a e. ~P X -> ( a i^i X ) = a ) |
14 |
13
|
fveq2d |
|- ( a e. ~P X -> ( O ` ( a i^i X ) ) = ( O ` a ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i X ) ) = ( O ` a ) ) |
16 |
|
ssdif0 |
|- ( a C_ X <-> ( a \ X ) = (/) ) |
17 |
10 16
|
sylib |
|- ( a e. ~P X -> ( a \ X ) = (/) ) |
18 |
17
|
fveq2d |
|- ( a e. ~P X -> ( O ` ( a \ X ) ) = ( O ` (/) ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ X ) ) = ( O ` (/) ) ) |
20 |
1
|
ome0 |
|- ( ph -> ( O ` (/) ) = 0 ) |
21 |
20
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> ( O ` (/) ) = 0 ) |
22 |
19 21
|
eqtrd |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ X ) ) = 0 ) |
23 |
15 22
|
oveq12d |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i X ) ) +e ( O ` ( a \ X ) ) ) = ( ( O ` a ) +e 0 ) ) |
24 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
25 |
1
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) |
26 |
10
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> a C_ X ) |
27 |
25 2 26
|
omecl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) e. ( 0 [,] +oo ) ) |
28 |
24 27
|
sselid |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) e. RR* ) |
29 |
28
|
xaddid1d |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` a ) +e 0 ) = ( O ` a ) ) |
30 |
|
eqidd |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) = ( O ` a ) ) |
31 |
23 29 30
|
3eqtrd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i X ) ) +e ( O ` ( a \ X ) ) ) = ( O ` a ) ) |
32 |
1 2 3 9 31
|
carageneld |
|- ( ph -> X e. S ) |