| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenunidm.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caragenunidm.x |
|- X = U. dom O |
| 3 |
|
caragenunidm.s |
|- S = ( CaraGen ` O ) |
| 4 |
|
dmexg |
|- ( O e. OutMeas -> dom O e. _V ) |
| 5 |
|
uniexg |
|- ( dom O e. _V -> U. dom O e. _V ) |
| 6 |
1 4 5
|
3syl |
|- ( ph -> U. dom O e. _V ) |
| 7 |
2 6
|
eqeltrid |
|- ( ph -> X e. _V ) |
| 8 |
|
pwidg |
|- ( X e. _V -> X e. ~P X ) |
| 9 |
7 8
|
syl |
|- ( ph -> X e. ~P X ) |
| 10 |
|
elpwi |
|- ( a e. ~P X -> a C_ X ) |
| 11 |
|
dfss2 |
|- ( a C_ X <-> ( a i^i X ) = a ) |
| 12 |
11
|
biimpi |
|- ( a C_ X -> ( a i^i X ) = a ) |
| 13 |
10 12
|
syl |
|- ( a e. ~P X -> ( a i^i X ) = a ) |
| 14 |
13
|
fveq2d |
|- ( a e. ~P X -> ( O ` ( a i^i X ) ) = ( O ` a ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i X ) ) = ( O ` a ) ) |
| 16 |
|
ssdif0 |
|- ( a C_ X <-> ( a \ X ) = (/) ) |
| 17 |
10 16
|
sylib |
|- ( a e. ~P X -> ( a \ X ) = (/) ) |
| 18 |
17
|
fveq2d |
|- ( a e. ~P X -> ( O ` ( a \ X ) ) = ( O ` (/) ) ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ X ) ) = ( O ` (/) ) ) |
| 20 |
1
|
ome0 |
|- ( ph -> ( O ` (/) ) = 0 ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> ( O ` (/) ) = 0 ) |
| 22 |
19 21
|
eqtrd |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ X ) ) = 0 ) |
| 23 |
15 22
|
oveq12d |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i X ) ) +e ( O ` ( a \ X ) ) ) = ( ( O ` a ) +e 0 ) ) |
| 24 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 25 |
1
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) |
| 26 |
10
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> a C_ X ) |
| 27 |
25 2 26
|
omecl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) e. ( 0 [,] +oo ) ) |
| 28 |
24 27
|
sselid |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) e. RR* ) |
| 29 |
28
|
xaddridd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` a ) +e 0 ) = ( O ` a ) ) |
| 30 |
|
eqidd |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) = ( O ` a ) ) |
| 31 |
23 29 30
|
3eqtrd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i X ) ) +e ( O ` ( a \ X ) ) ) = ( O ` a ) ) |
| 32 |
1 2 3 9 31
|
carageneld |
|- ( ph -> X e. S ) |