Metamath Proof Explorer


Theorem caragensspw

Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragensspw.o
|- ( ph -> O e. OutMeas )
caragensspw.x
|- X = U. dom O
caragensspw.s
|- S = ( CaraGen ` O )
Assertion caragensspw
|- ( ph -> S C_ ~P X )

Proof

Step Hyp Ref Expression
1 caragensspw.o
 |-  ( ph -> O e. OutMeas )
2 caragensspw.x
 |-  X = U. dom O
3 caragensspw.s
 |-  S = ( CaraGen ` O )
4 3 caragenss
 |-  ( O e. OutMeas -> S C_ dom O )
5 1 4 syl
 |-  ( ph -> S C_ dom O )
6 pwuni
 |-  dom O C_ ~P U. dom O
7 6 a1i
 |-  ( ph -> dom O C_ ~P U. dom O )
8 5 7 sstrd
 |-  ( ph -> S C_ ~P U. dom O )
9 2 pweqi
 |-  ~P X = ~P U. dom O
10 9 eqcomi
 |-  ~P U. dom O = ~P X
11 10 a1i
 |-  ( ph -> ~P U. dom O = ~P X )
12 8 11 sseqtrd
 |-  ( ph -> S C_ ~P X )