Step |
Hyp |
Ref |
Expression |
1 |
|
omessre.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
omessre.x |
|- X = U. dom O |
3 |
|
omessre.a |
|- ( ph -> A C_ X ) |
4 |
|
omessre.re |
|- ( ph -> ( O ` A ) e. RR ) |
5 |
|
omessre.b |
|- ( ph -> B C_ A ) |
6 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
7 |
|
0xr |
|- 0 e. RR* |
8 |
7
|
a1i |
|- ( ph -> 0 e. RR* ) |
9 |
|
pnfxr |
|- +oo e. RR* |
10 |
9
|
a1i |
|- ( ph -> +oo e. RR* ) |
11 |
5 3
|
sstrd |
|- ( ph -> B C_ X ) |
12 |
1 2 11
|
omexrcl |
|- ( ph -> ( O ` B ) e. RR* ) |
13 |
1 2 11
|
omecl |
|- ( ph -> ( O ` B ) e. ( 0 [,] +oo ) ) |
14 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( O ` B ) e. ( 0 [,] +oo ) ) -> 0 <_ ( O ` B ) ) |
15 |
8 10 13 14
|
syl3anc |
|- ( ph -> 0 <_ ( O ` B ) ) |
16 |
4
|
rexrd |
|- ( ph -> ( O ` A ) e. RR* ) |
17 |
1 2 3 5
|
omessle |
|- ( ph -> ( O ` B ) <_ ( O ` A ) ) |
18 |
4
|
ltpnfd |
|- ( ph -> ( O ` A ) < +oo ) |
19 |
12 16 10 17 18
|
xrlelttrd |
|- ( ph -> ( O ` B ) < +oo ) |
20 |
8 10 12 15 19
|
elicod |
|- ( ph -> ( O ` B ) e. ( 0 [,) +oo ) ) |
21 |
6 20
|
sselid |
|- ( ph -> ( O ` B ) e. RR ) |