Metamath Proof Explorer


Theorem omessre

Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omessre.o ( 𝜑𝑂 ∈ OutMeas )
omessre.x 𝑋 = dom 𝑂
omessre.a ( 𝜑𝐴𝑋 )
omessre.re ( 𝜑 → ( 𝑂𝐴 ) ∈ ℝ )
omessre.b ( 𝜑𝐵𝐴 )
Assertion omessre ( 𝜑 → ( 𝑂𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 omessre.o ( 𝜑𝑂 ∈ OutMeas )
2 omessre.x 𝑋 = dom 𝑂
3 omessre.a ( 𝜑𝐴𝑋 )
4 omessre.re ( 𝜑 → ( 𝑂𝐴 ) ∈ ℝ )
5 omessre.b ( 𝜑𝐵𝐴 )
6 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
7 0xr 0 ∈ ℝ*
8 7 a1i ( 𝜑 → 0 ∈ ℝ* )
9 pnfxr +∞ ∈ ℝ*
10 9 a1i ( 𝜑 → +∞ ∈ ℝ* )
11 5 3 sstrd ( 𝜑𝐵𝑋 )
12 1 2 11 omexrcl ( 𝜑 → ( 𝑂𝐵 ) ∈ ℝ* )
13 1 2 11 omecl ( 𝜑 → ( 𝑂𝐵 ) ∈ ( 0 [,] +∞ ) )
14 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂𝐵 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂𝐵 ) )
15 8 10 13 14 syl3anc ( 𝜑 → 0 ≤ ( 𝑂𝐵 ) )
16 4 rexrd ( 𝜑 → ( 𝑂𝐴 ) ∈ ℝ* )
17 1 2 3 5 omessle ( 𝜑 → ( 𝑂𝐵 ) ≤ ( 𝑂𝐴 ) )
18 4 ltpnfd ( 𝜑 → ( 𝑂𝐴 ) < +∞ )
19 12 16 10 17 18 xrlelttrd ( 𝜑 → ( 𝑂𝐵 ) < +∞ )
20 8 10 12 15 19 elicod ( 𝜑 → ( 𝑂𝐵 ) ∈ ( 0 [,) +∞ ) )
21 6 20 sselid ( 𝜑 → ( 𝑂𝐵 ) ∈ ℝ )