Step |
Hyp |
Ref |
Expression |
1 |
|
omessre.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
omessre.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
omessre.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
4 |
|
omessre.re |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
omessre.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
6 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
7 |
|
0xr |
⊢ 0 ∈ ℝ* |
8 |
7
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
10 |
9
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
11 |
5 3
|
sstrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑋 ) |
12 |
1 2 11
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ℝ* ) |
13 |
1 2 11
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
14 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂 ‘ 𝐵 ) ) |
15 |
8 10 13 14
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑂 ‘ 𝐵 ) ) |
16 |
4
|
rexrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ* ) |
17 |
1 2 3 5
|
omessle |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ≤ ( 𝑂 ‘ 𝐴 ) ) |
18 |
4
|
ltpnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) < +∞ ) |
19 |
12 16 10 17 18
|
xrlelttrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) < +∞ ) |
20 |
8 10 12 15 19
|
elicod |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
21 |
6 20
|
sselid |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ℝ ) |