| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omessre.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
omessre.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 3 |
|
omessre.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 4 |
|
omessre.re |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
omessre.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 6 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 11 |
5 3
|
sstrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑋 ) |
| 12 |
1 2 11
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ℝ* ) |
| 13 |
1 2 11
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 14 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂 ‘ 𝐵 ) ) |
| 15 |
8 10 13 14
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑂 ‘ 𝐵 ) ) |
| 16 |
4
|
rexrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ* ) |
| 17 |
1 2 3 5
|
omessle |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ≤ ( 𝑂 ‘ 𝐴 ) ) |
| 18 |
4
|
ltpnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) < +∞ ) |
| 19 |
12 16 10 17 18
|
xrlelttrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) < +∞ ) |
| 20 |
8 10 12 15 19
|
elicod |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 21 |
6 20
|
sselid |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐵 ) ∈ ℝ ) |