Metamath Proof Explorer


Theorem omessre

Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omessre.o φ O OutMeas
omessre.x X = dom O
omessre.a φ A X
omessre.re φ O A
omessre.b φ B A
Assertion omessre φ O B

Proof

Step Hyp Ref Expression
1 omessre.o φ O OutMeas
2 omessre.x X = dom O
3 omessre.a φ A X
4 omessre.re φ O A
5 omessre.b φ B A
6 rge0ssre 0 +∞
7 0xr 0 *
8 7 a1i φ 0 *
9 pnfxr +∞ *
10 9 a1i φ +∞ *
11 5 3 sstrd φ B X
12 1 2 11 omexrcl φ O B *
13 1 2 11 omecl φ O B 0 +∞
14 iccgelb 0 * +∞ * O B 0 +∞ 0 O B
15 8 10 13 14 syl3anc φ 0 O B
16 4 rexrd φ O A *
17 1 2 3 5 omessle φ O B O A
18 4 ltpnfd φ O A < +∞
19 12 16 10 17 18 xrlelttrd φ O B < +∞
20 8 10 12 15 19 elicod φ O B 0 +∞
21 6 20 sselid φ O B