Description: The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caragenuni.o | |- ( ph -> O e. OutMeas ) |
|
caragenuni.s | |- S = ( CaraGen ` O ) |
||
Assertion | caragenuni | |- ( ph -> U. S = U. dom O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenuni.o | |- ( ph -> O e. OutMeas ) |
|
2 | caragenuni.s | |- S = ( CaraGen ` O ) |
|
3 | 2 | caragenss | |- ( O e. OutMeas -> S C_ dom O ) |
4 | 1 3 | syl | |- ( ph -> S C_ dom O ) |
5 | 4 | unissd | |- ( ph -> U. S C_ U. dom O ) |
6 | eqid | |- U. dom O = U. dom O |
|
7 | 1 6 2 | caragenunidm | |- ( ph -> U. dom O e. S ) |
8 | elssuni | |- ( U. dom O e. S -> U. dom O C_ U. S ) |
|
9 | 7 8 | syl | |- ( ph -> U. dom O C_ U. S ) |
10 | 5 9 | eqssd | |- ( ph -> U. S = U. dom O ) |