Metamath Proof Explorer


Theorem caragenuni

Description: The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenuni.o
|- ( ph -> O e. OutMeas )
caragenuni.s
|- S = ( CaraGen ` O )
Assertion caragenuni
|- ( ph -> U. S = U. dom O )

Proof

Step Hyp Ref Expression
1 caragenuni.o
 |-  ( ph -> O e. OutMeas )
2 caragenuni.s
 |-  S = ( CaraGen ` O )
3 2 caragenss
 |-  ( O e. OutMeas -> S C_ dom O )
4 1 3 syl
 |-  ( ph -> S C_ dom O )
5 4 unissd
 |-  ( ph -> U. S C_ U. dom O )
6 eqid
 |-  U. dom O = U. dom O
7 1 6 2 caragenunidm
 |-  ( ph -> U. dom O e. S )
8 elssuni
 |-  ( U. dom O e. S -> U. dom O C_ U. S )
9 7 8 syl
 |-  ( ph -> U. dom O C_ U. S )
10 5 9 eqssd
 |-  ( ph -> U. S = U. dom O )