Step |
Hyp |
Ref |
Expression |
1 |
|
caragenuncllem.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caragenuncllem.s |
|- S = ( CaraGen ` O ) |
3 |
|
caragenuncllem.e |
|- ( ph -> E e. S ) |
4 |
|
caragenuncllem.f |
|- ( ph -> F e. S ) |
5 |
|
caragenuncllem.x |
|- X = U. dom O |
6 |
|
caragenuncllem.a |
|- ( ph -> A C_ X ) |
7 |
6
|
ssinss1d |
|- ( ph -> ( A i^i ( E u. F ) ) C_ X ) |
8 |
1 2 5 3 7
|
caragensplit |
|- ( ph -> ( ( O ` ( ( A i^i ( E u. F ) ) i^i E ) ) +e ( O ` ( ( A i^i ( E u. F ) ) \ E ) ) ) = ( O ` ( A i^i ( E u. F ) ) ) ) |
9 |
8
|
eqcomd |
|- ( ph -> ( O ` ( A i^i ( E u. F ) ) ) = ( ( O ` ( ( A i^i ( E u. F ) ) i^i E ) ) +e ( O ` ( ( A i^i ( E u. F ) ) \ E ) ) ) ) |
10 |
|
inass |
|- ( ( A i^i ( E u. F ) ) i^i E ) = ( A i^i ( ( E u. F ) i^i E ) ) |
11 |
|
incom |
|- ( ( E u. F ) i^i E ) = ( E i^i ( E u. F ) ) |
12 |
|
inabs |
|- ( E i^i ( E u. F ) ) = E |
13 |
11 12
|
eqtri |
|- ( ( E u. F ) i^i E ) = E |
14 |
13
|
ineq2i |
|- ( A i^i ( ( E u. F ) i^i E ) ) = ( A i^i E ) |
15 |
10 14
|
eqtri |
|- ( ( A i^i ( E u. F ) ) i^i E ) = ( A i^i E ) |
16 |
15
|
fveq2i |
|- ( O ` ( ( A i^i ( E u. F ) ) i^i E ) ) = ( O ` ( A i^i E ) ) |
17 |
|
incom |
|- ( ( A \ E ) i^i F ) = ( F i^i ( A \ E ) ) |
18 |
|
indifcom |
|- ( F i^i ( A \ E ) ) = ( A i^i ( F \ E ) ) |
19 |
17 18
|
eqtr2i |
|- ( A i^i ( F \ E ) ) = ( ( A \ E ) i^i F ) |
20 |
19
|
eqcomi |
|- ( ( A \ E ) i^i F ) = ( A i^i ( F \ E ) ) |
21 |
|
difundir |
|- ( ( E u. F ) \ E ) = ( ( E \ E ) u. ( F \ E ) ) |
22 |
|
difid |
|- ( E \ E ) = (/) |
23 |
22
|
uneq1i |
|- ( ( E \ E ) u. ( F \ E ) ) = ( (/) u. ( F \ E ) ) |
24 |
|
0un |
|- ( (/) u. ( F \ E ) ) = ( F \ E ) |
25 |
21 23 24
|
3eqtrri |
|- ( F \ E ) = ( ( E u. F ) \ E ) |
26 |
25
|
ineq2i |
|- ( A i^i ( F \ E ) ) = ( A i^i ( ( E u. F ) \ E ) ) |
27 |
|
indif2 |
|- ( A i^i ( ( E u. F ) \ E ) ) = ( ( A i^i ( E u. F ) ) \ E ) |
28 |
20 26 27
|
3eqtrri |
|- ( ( A i^i ( E u. F ) ) \ E ) = ( ( A \ E ) i^i F ) |
29 |
28
|
fveq2i |
|- ( O ` ( ( A i^i ( E u. F ) ) \ E ) ) = ( O ` ( ( A \ E ) i^i F ) ) |
30 |
16 29
|
oveq12i |
|- ( ( O ` ( ( A i^i ( E u. F ) ) i^i E ) ) +e ( O ` ( ( A i^i ( E u. F ) ) \ E ) ) ) = ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) |
31 |
30
|
a1i |
|- ( ph -> ( ( O ` ( ( A i^i ( E u. F ) ) i^i E ) ) +e ( O ` ( ( A i^i ( E u. F ) ) \ E ) ) ) = ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) ) |
32 |
|
eqidd |
|- ( ph -> ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) = ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) ) |
33 |
9 31 32
|
3eqtrd |
|- ( ph -> ( O ` ( A i^i ( E u. F ) ) ) = ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) ) |
34 |
|
difun1 |
|- ( A \ ( E u. F ) ) = ( ( A \ E ) \ F ) |
35 |
34
|
fveq2i |
|- ( O ` ( A \ ( E u. F ) ) ) = ( O ` ( ( A \ E ) \ F ) ) |
36 |
35
|
a1i |
|- ( ph -> ( O ` ( A \ ( E u. F ) ) ) = ( O ` ( ( A \ E ) \ F ) ) ) |
37 |
33 36
|
oveq12d |
|- ( ph -> ( ( O ` ( A i^i ( E u. F ) ) ) +e ( O ` ( A \ ( E u. F ) ) ) ) = ( ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) ) |
38 |
6
|
ssinss1d |
|- ( ph -> ( A i^i E ) C_ X ) |
39 |
1 5 38
|
omexrcl |
|- ( ph -> ( O ` ( A i^i E ) ) e. RR* ) |
40 |
1 5 38
|
omecl |
|- ( ph -> ( O ` ( A i^i E ) ) e. ( 0 [,] +oo ) ) |
41 |
40
|
xrge0nemnfd |
|- ( ph -> ( O ` ( A i^i E ) ) =/= -oo ) |
42 |
39 41
|
jca |
|- ( ph -> ( ( O ` ( A i^i E ) ) e. RR* /\ ( O ` ( A i^i E ) ) =/= -oo ) ) |
43 |
1 2 4 5
|
caragenelss |
|- ( ph -> F C_ X ) |
44 |
43
|
ssinss2d |
|- ( ph -> ( ( A \ E ) i^i F ) C_ X ) |
45 |
1 5 44
|
omexrcl |
|- ( ph -> ( O ` ( ( A \ E ) i^i F ) ) e. RR* ) |
46 |
1 5 44
|
omecl |
|- ( ph -> ( O ` ( ( A \ E ) i^i F ) ) e. ( 0 [,] +oo ) ) |
47 |
46
|
xrge0nemnfd |
|- ( ph -> ( O ` ( ( A \ E ) i^i F ) ) =/= -oo ) |
48 |
45 47
|
jca |
|- ( ph -> ( ( O ` ( ( A \ E ) i^i F ) ) e. RR* /\ ( O ` ( ( A \ E ) i^i F ) ) =/= -oo ) ) |
49 |
6
|
ssdifssd |
|- ( ph -> ( A \ E ) C_ X ) |
50 |
49
|
ssdifssd |
|- ( ph -> ( ( A \ E ) \ F ) C_ X ) |
51 |
1 5 50
|
omexrcl |
|- ( ph -> ( O ` ( ( A \ E ) \ F ) ) e. RR* ) |
52 |
1 5 50
|
omecl |
|- ( ph -> ( O ` ( ( A \ E ) \ F ) ) e. ( 0 [,] +oo ) ) |
53 |
52
|
xrge0nemnfd |
|- ( ph -> ( O ` ( ( A \ E ) \ F ) ) =/= -oo ) |
54 |
51 53
|
jca |
|- ( ph -> ( ( O ` ( ( A \ E ) \ F ) ) e. RR* /\ ( O ` ( ( A \ E ) \ F ) ) =/= -oo ) ) |
55 |
|
xaddass |
|- ( ( ( ( O ` ( A i^i E ) ) e. RR* /\ ( O ` ( A i^i E ) ) =/= -oo ) /\ ( ( O ` ( ( A \ E ) i^i F ) ) e. RR* /\ ( O ` ( ( A \ E ) i^i F ) ) =/= -oo ) /\ ( ( O ` ( ( A \ E ) \ F ) ) e. RR* /\ ( O ` ( ( A \ E ) \ F ) ) =/= -oo ) ) -> ( ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) = ( ( O ` ( A i^i E ) ) +e ( ( O ` ( ( A \ E ) i^i F ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) ) ) |
56 |
42 48 54 55
|
syl3anc |
|- ( ph -> ( ( ( O ` ( A i^i E ) ) +e ( O ` ( ( A \ E ) i^i F ) ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) = ( ( O ` ( A i^i E ) ) +e ( ( O ` ( ( A \ E ) i^i F ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) ) ) |
57 |
1 2 5 4 49
|
caragensplit |
|- ( ph -> ( ( O ` ( ( A \ E ) i^i F ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) = ( O ` ( A \ E ) ) ) |
58 |
57
|
oveq2d |
|- ( ph -> ( ( O ` ( A i^i E ) ) +e ( ( O ` ( ( A \ E ) i^i F ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) ) = ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) ) |
59 |
1 2 5 3 6
|
caragensplit |
|- ( ph -> ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) = ( O ` A ) ) |
60 |
58 59
|
eqtrd |
|- ( ph -> ( ( O ` ( A i^i E ) ) +e ( ( O ` ( ( A \ E ) i^i F ) ) +e ( O ` ( ( A \ E ) \ F ) ) ) ) = ( O ` A ) ) |
61 |
37 56 60
|
3eqtrd |
|- ( ph -> ( ( O ` ( A i^i ( E u. F ) ) ) +e ( O ` ( A \ ( E u. F ) ) ) ) = ( O ` A ) ) |