| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenuncllem.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
caragenuncllem.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 3 |
|
caragenuncllem.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
| 4 |
|
caragenuncllem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 5 |
|
caragenuncllem.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 6 |
|
caragenuncllem.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 7 |
6
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ⊆ 𝑋 ) |
| 8 |
1 2 5 3 7
|
caragensplit |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) ) |
| 10 |
|
inass |
⊢ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) = ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) ) |
| 11 |
|
incom |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) = ( 𝐸 ∩ ( 𝐸 ∪ 𝐹 ) ) |
| 12 |
|
inabs |
⊢ ( 𝐸 ∩ ( 𝐸 ∪ 𝐹 ) ) = 𝐸 |
| 13 |
11 12
|
eqtri |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) = 𝐸 |
| 14 |
13
|
ineq2i |
⊢ ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) ) = ( 𝐴 ∩ 𝐸 ) |
| 15 |
10 14
|
eqtri |
⊢ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) = ( 𝐴 ∩ 𝐸 ) |
| 16 |
15
|
fveq2i |
⊢ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) = ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) |
| 17 |
|
incom |
⊢ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) = ( 𝐹 ∩ ( 𝐴 ∖ 𝐸 ) ) |
| 18 |
|
indifcom |
⊢ ( 𝐹 ∩ ( 𝐴 ∖ 𝐸 ) ) = ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) |
| 19 |
17 18
|
eqtr2i |
⊢ ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) = ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) |
| 20 |
19
|
eqcomi |
⊢ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) = ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) |
| 21 |
|
difundir |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) = ( ( 𝐸 ∖ 𝐸 ) ∪ ( 𝐹 ∖ 𝐸 ) ) |
| 22 |
|
difid |
⊢ ( 𝐸 ∖ 𝐸 ) = ∅ |
| 23 |
22
|
uneq1i |
⊢ ( ( 𝐸 ∖ 𝐸 ) ∪ ( 𝐹 ∖ 𝐸 ) ) = ( ∅ ∪ ( 𝐹 ∖ 𝐸 ) ) |
| 24 |
|
0un |
⊢ ( ∅ ∪ ( 𝐹 ∖ 𝐸 ) ) = ( 𝐹 ∖ 𝐸 ) |
| 25 |
21 23 24
|
3eqtrri |
⊢ ( 𝐹 ∖ 𝐸 ) = ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) |
| 26 |
25
|
ineq2i |
⊢ ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) = ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) ) |
| 27 |
|
indif2 |
⊢ ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) ) = ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) |
| 28 |
20 26 27
|
3eqtrri |
⊢ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) = ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) |
| 29 |
28
|
fveq2i |
⊢ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) = ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) |
| 30 |
16 29
|
oveq12i |
⊢ ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) ) |
| 32 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) ) |
| 33 |
9 31 32
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) ) |
| 34 |
|
difun1 |
⊢ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) = ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) |
| 35 |
34
|
fveq2i |
⊢ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) |
| 37 |
33 36
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) ) = ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) |
| 38 |
6
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐸 ) ⊆ 𝑋 ) |
| 39 |
1 5 38
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ℝ* ) |
| 40 |
1 5 38
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ( 0 [,] +∞ ) ) |
| 41 |
40
|
xrge0nemnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ≠ -∞ ) |
| 42 |
39 41
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ≠ -∞ ) ) |
| 43 |
1 2 4 5
|
caragenelss |
⊢ ( 𝜑 → 𝐹 ⊆ 𝑋 ) |
| 44 |
43
|
ssinss2d |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ⊆ 𝑋 ) |
| 45 |
1 5 44
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ℝ* ) |
| 46 |
1 5 44
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ( 0 [,] +∞ ) ) |
| 47 |
46
|
xrge0nemnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ≠ -∞ ) |
| 48 |
45 47
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ≠ -∞ ) ) |
| 49 |
6
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐸 ) ⊆ 𝑋 ) |
| 50 |
49
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ⊆ 𝑋 ) |
| 51 |
1 5 50
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ℝ* ) |
| 52 |
1 5 50
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ( 0 [,] +∞ ) ) |
| 53 |
52
|
xrge0nemnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ≠ -∞ ) |
| 54 |
51 53
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ≠ -∞ ) ) |
| 55 |
|
xaddass |
⊢ ( ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ≠ -∞ ) ∧ ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ≠ -∞ ) ∧ ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ≠ -∞ ) ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) ) |
| 56 |
42 48 54 55
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) ) |
| 57 |
1 2 5 4 49
|
caragensplit |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) |
| 58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |
| 59 |
1 2 5 3 6
|
caragensplit |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 60 |
58 59
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 61 |
37 56 60
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |