Step |
Hyp |
Ref |
Expression |
1 |
|
caragenuncllem.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caragenuncllem.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
caragenuncllem.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
4 |
|
caragenuncllem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
5 |
|
caragenuncllem.x |
⊢ 𝑋 = ∪ dom 𝑂 |
6 |
|
caragenuncllem.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
7 |
6
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ⊆ 𝑋 ) |
8 |
1 2 5 3 7
|
caragensplit |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) ) |
9 |
8
|
eqcomd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) ) |
10 |
|
inass |
⊢ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) = ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) ) |
11 |
|
incom |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) = ( 𝐸 ∩ ( 𝐸 ∪ 𝐹 ) ) |
12 |
|
inabs |
⊢ ( 𝐸 ∩ ( 𝐸 ∪ 𝐹 ) ) = 𝐸 |
13 |
11 12
|
eqtri |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) = 𝐸 |
14 |
13
|
ineq2i |
⊢ ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∩ 𝐸 ) ) = ( 𝐴 ∩ 𝐸 ) |
15 |
10 14
|
eqtri |
⊢ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) = ( 𝐴 ∩ 𝐸 ) |
16 |
15
|
fveq2i |
⊢ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) = ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) |
17 |
|
incom |
⊢ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) = ( 𝐹 ∩ ( 𝐴 ∖ 𝐸 ) ) |
18 |
|
indifcom |
⊢ ( 𝐹 ∩ ( 𝐴 ∖ 𝐸 ) ) = ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) |
19 |
17 18
|
eqtr2i |
⊢ ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) = ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) |
20 |
19
|
eqcomi |
⊢ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) = ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) |
21 |
|
difundir |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) = ( ( 𝐸 ∖ 𝐸 ) ∪ ( 𝐹 ∖ 𝐸 ) ) |
22 |
|
difid |
⊢ ( 𝐸 ∖ 𝐸 ) = ∅ |
23 |
22
|
uneq1i |
⊢ ( ( 𝐸 ∖ 𝐸 ) ∪ ( 𝐹 ∖ 𝐸 ) ) = ( ∅ ∪ ( 𝐹 ∖ 𝐸 ) ) |
24 |
|
0un |
⊢ ( ∅ ∪ ( 𝐹 ∖ 𝐸 ) ) = ( 𝐹 ∖ 𝐸 ) |
25 |
21 23 24
|
3eqtrri |
⊢ ( 𝐹 ∖ 𝐸 ) = ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) |
26 |
25
|
ineq2i |
⊢ ( 𝐴 ∩ ( 𝐹 ∖ 𝐸 ) ) = ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) ) |
27 |
|
indif2 |
⊢ ( 𝐴 ∩ ( ( 𝐸 ∪ 𝐹 ) ∖ 𝐸 ) ) = ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) |
28 |
20 26 27
|
3eqtrri |
⊢ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) = ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) |
29 |
28
|
fveq2i |
⊢ ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) = ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) |
30 |
16 29
|
oveq12i |
⊢ ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ∖ 𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) ) |
32 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) ) |
33 |
9 31 32
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) ) |
34 |
|
difun1 |
⊢ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) = ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) |
35 |
34
|
fveq2i |
⊢ ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) = ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) |
37 |
33 36
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) ) = ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) |
38 |
6
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐸 ) ⊆ 𝑋 ) |
39 |
1 5 38
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ℝ* ) |
40 |
1 5 38
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ( 0 [,] +∞ ) ) |
41 |
40
|
xrge0nemnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ≠ -∞ ) |
42 |
39 41
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ≠ -∞ ) ) |
43 |
1 2 4 5
|
caragenelss |
⊢ ( 𝜑 → 𝐹 ⊆ 𝑋 ) |
44 |
43
|
ssinss2d |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ⊆ 𝑋 ) |
45 |
1 5 44
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ℝ* ) |
46 |
1 5 44
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ( 0 [,] +∞ ) ) |
47 |
46
|
xrge0nemnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ≠ -∞ ) |
48 |
45 47
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ≠ -∞ ) ) |
49 |
6
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐸 ) ⊆ 𝑋 ) |
50 |
49
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ⊆ 𝑋 ) |
51 |
1 5 50
|
omexrcl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ℝ* ) |
52 |
1 5 50
|
omecl |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ( 0 [,] +∞ ) ) |
53 |
52
|
xrge0nemnfd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ≠ -∞ ) |
54 |
51 53
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ≠ -∞ ) ) |
55 |
|
xaddass |
⊢ ( ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ≠ -∞ ) ∧ ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ≠ -∞ ) ∧ ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ≠ -∞ ) ) → ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) ) |
56 |
42 48 54 55
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) ) |
57 |
1 2 5 4 49
|
caragensplit |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) = ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |
59 |
1 2 5 3 6
|
caragensplit |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
60 |
58 59
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∩ 𝐹 ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐴 ∖ 𝐸 ) ∖ 𝐹 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
61 |
37 56 60
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ ( 𝐸 ∪ 𝐹 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ ( 𝐸 ∪ 𝐹 ) ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |