| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenuncllem.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragenuncllem.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caragenuncllem.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑆 ) | 
						
							| 4 |  | caragenuncllem.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 5 |  | caragenuncllem.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 6 |  | caragenuncllem.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) | 
						
							| 7 | 6 | ssinss1d | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ⊆  𝑋 ) | 
						
							| 8 | 1 2 5 3 7 | caragensplit | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) ) ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) ) )  =  ( ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 ) ) ) ) | 
						
							| 10 |  | inass | ⊢ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 )  =  ( 𝐴  ∩  ( ( 𝐸  ∪  𝐹 )  ∩  𝐸 ) ) | 
						
							| 11 |  | incom | ⊢ ( ( 𝐸  ∪  𝐹 )  ∩  𝐸 )  =  ( 𝐸  ∩  ( 𝐸  ∪  𝐹 ) ) | 
						
							| 12 |  | inabs | ⊢ ( 𝐸  ∩  ( 𝐸  ∪  𝐹 ) )  =  𝐸 | 
						
							| 13 | 11 12 | eqtri | ⊢ ( ( 𝐸  ∪  𝐹 )  ∩  𝐸 )  =  𝐸 | 
						
							| 14 | 13 | ineq2i | ⊢ ( 𝐴  ∩  ( ( 𝐸  ∪  𝐹 )  ∩  𝐸 ) )  =  ( 𝐴  ∩  𝐸 ) | 
						
							| 15 | 10 14 | eqtri | ⊢ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 )  =  ( 𝐴  ∩  𝐸 ) | 
						
							| 16 | 15 | fveq2i | ⊢ ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 ) )  =  ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) ) | 
						
							| 17 |  | incom | ⊢ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 )  =  ( 𝐹  ∩  ( 𝐴  ∖  𝐸 ) ) | 
						
							| 18 |  | indifcom | ⊢ ( 𝐹  ∩  ( 𝐴  ∖  𝐸 ) )  =  ( 𝐴  ∩  ( 𝐹  ∖  𝐸 ) ) | 
						
							| 19 | 17 18 | eqtr2i | ⊢ ( 𝐴  ∩  ( 𝐹  ∖  𝐸 ) )  =  ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) | 
						
							| 20 | 19 | eqcomi | ⊢ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 )  =  ( 𝐴  ∩  ( 𝐹  ∖  𝐸 ) ) | 
						
							| 21 |  | difundir | ⊢ ( ( 𝐸  ∪  𝐹 )  ∖  𝐸 )  =  ( ( 𝐸  ∖  𝐸 )  ∪  ( 𝐹  ∖  𝐸 ) ) | 
						
							| 22 |  | difid | ⊢ ( 𝐸  ∖  𝐸 )  =  ∅ | 
						
							| 23 | 22 | uneq1i | ⊢ ( ( 𝐸  ∖  𝐸 )  ∪  ( 𝐹  ∖  𝐸 ) )  =  ( ∅  ∪  ( 𝐹  ∖  𝐸 ) ) | 
						
							| 24 |  | 0un | ⊢ ( ∅  ∪  ( 𝐹  ∖  𝐸 ) )  =  ( 𝐹  ∖  𝐸 ) | 
						
							| 25 | 21 23 24 | 3eqtrri | ⊢ ( 𝐹  ∖  𝐸 )  =  ( ( 𝐸  ∪  𝐹 )  ∖  𝐸 ) | 
						
							| 26 | 25 | ineq2i | ⊢ ( 𝐴  ∩  ( 𝐹  ∖  𝐸 ) )  =  ( 𝐴  ∩  ( ( 𝐸  ∪  𝐹 )  ∖  𝐸 ) ) | 
						
							| 27 |  | indif2 | ⊢ ( 𝐴  ∩  ( ( 𝐸  ∪  𝐹 )  ∖  𝐸 ) )  =  ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 ) | 
						
							| 28 | 20 26 27 | 3eqtrri | ⊢ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 )  =  ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) | 
						
							| 29 | 28 | fveq2i | ⊢ ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 ) )  =  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) | 
						
							| 30 | 16 29 | oveq12i | ⊢ ( ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) )  ∖  𝐸 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) ) ) | 
						
							| 32 |  | eqidd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) ) ) | 
						
							| 33 | 9 31 32 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) ) ) | 
						
							| 34 |  | difun1 | ⊢ ( 𝐴  ∖  ( 𝐸  ∪  𝐹 ) )  =  ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) | 
						
							| 35 | 34 | fveq2i | ⊢ ( 𝑂 ‘ ( 𝐴  ∖  ( 𝐸  ∪  𝐹 ) ) )  =  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∖  ( 𝐸  ∪  𝐹 ) ) )  =  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) ) | 
						
							| 37 | 33 36 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐴  ∖  ( 𝐸  ∪  𝐹 ) ) ) )  =  ( ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) ) ) | 
						
							| 38 | 6 | ssinss1d | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐸 )  ⊆  𝑋 ) | 
						
							| 39 | 1 5 38 | omexrcl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ∈  ℝ* ) | 
						
							| 40 | 1 5 38 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 41 | 40 | xrge0nemnfd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ≠  -∞ ) | 
						
							| 42 | 39 41 | jca | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ≠  -∞ ) ) | 
						
							| 43 | 1 2 4 5 | caragenelss | ⊢ ( 𝜑  →  𝐹  ⊆  𝑋 ) | 
						
							| 44 | 43 | ssinss2d | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 )  ⊆  𝑋 ) | 
						
							| 45 | 1 5 44 | omexrcl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ∈  ℝ* ) | 
						
							| 46 | 1 5 44 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 47 | 46 | xrge0nemnfd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ≠  -∞ ) | 
						
							| 48 | 45 47 | jca | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ≠  -∞ ) ) | 
						
							| 49 | 6 | ssdifssd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐸 )  ⊆  𝑋 ) | 
						
							| 50 | 49 | ssdifssd | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 )  ⊆  𝑋 ) | 
						
							| 51 | 1 5 50 | omexrcl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ∈  ℝ* ) | 
						
							| 52 | 1 5 50 | omecl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 53 | 52 | xrge0nemnfd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ≠  -∞ ) | 
						
							| 54 | 51 53 | jca | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ≠  -∞ ) ) | 
						
							| 55 |  | xaddass | ⊢ ( ( ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  ≠  -∞ )  ∧  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  ≠  -∞ )  ∧  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) )  ≠  -∞ ) )  →  ( ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) ) ) ) | 
						
							| 56 | 42 48 54 55 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) ) ) ) | 
						
							| 57 | 1 2 5 4 49 | caragensplit | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) )  =  ( 𝑂 ‘ ( 𝐴  ∖  𝐸 ) ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝐴  ∖  𝐸 ) ) ) ) | 
						
							| 59 | 1 2 5 3 6 | caragensplit | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝐴  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 60 | 58 59 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  𝐸 ) )  +𝑒  ( ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∩  𝐹 ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐴  ∖  𝐸 )  ∖  𝐹 ) ) ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 61 | 37 56 60 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝐴  ∩  ( 𝐸  ∪  𝐹 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐴  ∖  ( 𝐸  ∪  𝐹 ) ) ) )  =  ( 𝑂 ‘ 𝐴 ) ) |